, Volume 120, Issue 2, pp 115–129 | Cite as

Ecological optima and tolerances of Thelypteris limbosperma, Athyrium distentifolium, and Matteuccia struthiopteris along environmental gradients in Western Norway

  • A. Odland
  • H. J. B. Birks
  • J. M. Line


The distribution and abundance of Thelypteris limbosperma, Athyrium distentifolium, and Matteuccia struthiopteris are modelled statistically in relation to 14 environmental variables along the major climatic, topographic, and edaphic gradients in western Norway. The data are from 624 stands from which measurements or estimates of mean January and mean July temperatures, humidity, altitude, aspect, and slope are available. From 182 of these stands eight soil variables have also been measured. The species responses are quantified by two numerical methods: Gaussian logit regression and weighted averaging (WA) regression. The estimated WA optima suggest that A. distentifolium has an ecological preference for low July and January temperatures, high altitudes, and soils of low-medium pH and base content. The species shows statistically significant Gaussian responses with summer temperature, humidity (= Martonnes humidity index), altitude, slope, aspect, pH, cation exchange capacity, and base saturation with optima of 8.7 °C, 188.9, 1220 m, 28°, 29°, 4.8, 13.77 mEq 100 g dry soil-1, and 13.4%, respectively. These suggest that the occurrence and relative abundance of A. distentifolium are well predicted by summer temperature, topography, and soil pH and base status. T. limbosperma has WA optima that suggest that it favours moderately high winter and summer temperatures, high humidity, medium altitude, and soils of low pH and base content. It has significant Gaussian responses to summer temperature (optimum =12.6 °C), winter temperature (-1.8 °C), humidity (179.2), altitude (459.5 m), slope (22.5°), and Na (0.7 mg 100 g dry soil-1). These suggest that climatic factors, altitude, and slope are significant predictors for its occurrence and abundance. M. struthiopteris has high WA optima for summer temperature, pH, Ca, Mg, K, Na, cation exchange capacity (CEC), and base saturation, and a low optima for humidity and winter temperature. Of these, summer temperature (16.0 °C), Ca (63.1 mg 100 g dry soil-1), Mg (41.0 mg 100 g dry soil-1), K (23.6 mg 100 g dry soil-1), Na (5.0 mg 100 g dry soil-1), CEC (60.7 mEq 100 g dry soil-1), and base saturation (56.3%) have significant Gaussian logit responses, as do aspect (150.2°) and loss-on-ignition (9.4%). These results suggest that the occurrence and relative abundance of M. struthiopteris are well predicted by high soil base cations, a generally southern aspect, low organic content in the soil, and high July temperatures.

Key words

Canonical correspondence analysis Ecological optima Fern ecology Gaussian logit regression Generalised linear models Weighted averaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, M. P. 1980. Searching for a model for vegetation analysis. Vegetatio 43: 11–21.Google Scholar
  2. Austin, M. P. 1987. Models for the analysis of species' response to environmental gradients. Vegetatio 69: 35–45.Google Scholar
  3. Austin, M. P. 1992. Modelling the environmental niche of plants: implications for plant community response to elevated CO2 levels. Australian Journal of Botany 40: 615–630.Google Scholar
  4. Austin, M. P. & Cunningham, R. B. 1981. Observational analysis of environmental gradients. Proceedings of the Ecological Society of Australia 11: 109–119.Google Scholar
  5. Austin, M. P., Cunningham, R. B. & Good, R. B. 1983. Altitudinal distribution of several eucalypt species in relation to other environmental factors in southern New South Wales. Australian Journal of Ecology 8: 169–180.Google Scholar
  6. Austin, M. P., Cunningham, R. B. & Fleming, P. M. 1984. New approaches to direct gradient analysis using environmental scalars and statistical curve fitting procedures. Vegetatio 33: 43–49.Google Scholar
  7. Austin, M. P. & Gaywood, M. J. 1994. Current problems of environmental gradients and species response curves in relation to continuum theory. Journal of Vegetation Science 5: 473–482.Google Scholar
  8. Austin, M. P., Nicholls, A. O., Doherty, M. D. & Meyers, J. A. 1994. Determining species response functions to an environmental gradient by means of a β-function. Journal of Vegetation Science 5: 215–228.Google Scholar
  9. Austin, M. P., Nicholls, A. O. & Margules, C. R. 1990. Measurement of the realized quantitative niche: environmental niches of five Eucalyptus species. Ecological Monographs 60: 161–177.Google Scholar
  10. Austin, M. P. & Smith, T. M. 1989. A new model for the continuum concept. Vegetatio 83: 35–47.Google Scholar
  11. Batschelet, E. 1981. Circular statistics in biology. Academic Press, London.Google Scholar
  12. Birks, H. J. B. 1976. The distribution of European pteridophytes: a numerical analysis. New Phytologist 77: 257–287.Google Scholar
  13. Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C. & ter, Braak, C. J. F. 1990. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London, B 327: 263–278.Google Scholar
  14. Carter, R. N. & Prince, S. D. 1985. The effects of climate on plant distributions. In: Tooley, M. J. & Sheail, G. M. (eds), The Climatic Scene. George Allen & Unwin, London: 235–253.Google Scholar
  15. Daubenmire, R. F. 1974. Plants and Environment. A Textbook of Autecology. J. Wiley & Sons, New York.Google Scholar
  16. Fyre, M. D., Carr, R., McBlane, R. P. & Foster, G. N. 1992a. The effects of varying site-water duration on the distribution of water beetle assemblages, adults and larvae (Coleoptera: Haliplidae, Dysticidae, Hydrophilidae). Archiv für Hydrobiologie 124: 281–291.Google Scholar
  17. Eyre, M. D., Foster, G. N. & Young, A. G. 1993b. Relationships between water-beetle distributions and climatic variables: A possible index for monitoring global climatic change. Archiv für Hydrobiologie 127: 437–450.Google Scholar
  18. Eyre, M. D., Pilkington, J. G., Carr, R., McBlane, R. P., Rushton, S. P. & Foster, G. N. 1993a. The running-water beetles (Coleoptera) of a river catchement in northern England. Hydrobiologia 264: 33–45.Google Scholar
  19. Eyre, M. D., Rushton, S. P., Young, A. G. & Hill, D. 1992b. Land cover and breeding birds. In: Whitby, M. C. (ed.), Land Use Change: The Causes and Consequences. HMSO, London: 131–136.Google Scholar
  20. Fægri, K. 1960. Maps of distribution of Norwegian plants. I. The Coast Plants. Univ. Bergen. Skr. 26: 1–134.Google Scholar
  21. Gauch, H. G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge.Google Scholar
  22. Gjærevoll, O. 1990. Maps of distribution of Norwegian vascular plants. II. Alpine Plants. Tapir Publishers, Trondheim.Google Scholar
  23. Grillas, P. 1990. Distribution of submerged macrophytes in the Camargue in relation to environmental factors. Journal of Vegetation Science 1: 393–402.Google Scholar
  24. Hadley, G. (ed.). 1985. A Map Flora of Mainland Inverness-shire. Botanical Society of Edinburgh, Botanical Society of the British Isles.Google Scholar
  25. Huisman, J., Olff, H. & Fresco, L. F. M. 1993. A hierarchical set of models for species response analysis. Journal of Vegetation Science 4: 37–46.Google Scholar
  26. Jalas, J. & Suominen, J. 1972. Atlas Florae Europaeae. 1 Pteridophyta. Suomalainen Kirjallisuuden Kirjapaina Oy. Helsinki.Google Scholar
  27. Line, J. M., ter, Braak, C. J. F. & Birks, H. J. B. 1994. WACALIB version 3.3 — a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. Journal of Paleolimnology 10: 147–152.Google Scholar
  28. McCullagh, P. & Nelder, J. A. 1989. Generalized Linear Models (Second Edition). Chapman and Hall, London.Google Scholar
  29. Meusel, H., Jäger, E. & Weinert, E. 1965. Vergleichende Chorologie der Zentraleuropäeischen Flora. Gustav Fischer Verlag, Jena.Google Scholar
  30. Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods in vegetation ecology. J. Wiley & Sons, New York.Google Scholar
  31. Odland, A. 1987. On the ecology of Thelypteris limbosperma in W Norway. The distribution in relation to climatic factors. Nordic Journal of Botany 7: 325–337.Google Scholar
  32. Odland, A. 1991a. On the ecology of Thelypteris limbosperma — a synecological investigation of T. limbosperma-dominated stands in W Norway. Nordic Journal of Botany 10: 637–659.Google Scholar
  33. Odland, A. 1991b. A synecological investigation of Athyrium distentifolium-dominated stands in Western Norway. Nordic Journal of Botany 11: 651–673.Google Scholar
  34. Odland, A. 1992. A synecological investigation of Matteuccia struthiopteris-dominated stands in Western Norway. Vegetatio 102: 69–95.Google Scholar
  35. Odland, A. 1993. The ecology and life history of Thelypteris limbosperma, Athyrium distentifolium and Matteuccia struthiopteris in Western Norway. Doctoral thesis, University of Bergen.Google Scholar
  36. Odland, A., Birks, H. J. B. & Line, J. M. 1990. Quantitative vegetation-environment relationships in West Norwegian tallfern vegetation. Nordic Journal of Botany 10: 511–533.Google Scholar
  37. Page, C. N. 1979. Experimental aspects of fern ecology. In: Dyer, A. F. (ed.), The experimental biology of ferns. Academic Press, London: 552–581.Google Scholar
  38. Page, C. N. 1982. The Ferns of Britain and Ireland. Cambridge University Press, Cambridge.Google Scholar
  39. Page, C. N. 1988. A Natural History of Britain's Ferns. Collins, London.Google Scholar
  40. Payne, C. D. (ed.). 1986. The GLIM System Release 3.77. Numerical Algorithms Group, Oxford.Google Scholar
  41. Prange, R. K. & von, Aderkas, P. 1985. The biological flora of Canada. 6. Matteuccia struthiopteris (L.) Todaro, Ostrich fern. Canadian Field Naturalist 99: 517–532.Google Scholar
  42. Rossby, C.-G. 1955. On the chemical climate and its variation with the atmospheric circulation pattern. Tellus 7: 118–133.Google Scholar
  43. Rushton, S. P. 1991. A discriminant analysis and logistic regression approach to the analysis of Walckenaeria habitat characteristics in grassland (Araneae: Linyphiidae). Bulletin of the British Arachological Society 8: 201–208.Google Scholar
  44. Rushton, S. P., Eyre, M. D. & Luff, M. L. 1990. The effects of management on the occurrence of some Carabid species in grassland. In: Stork, N. E. (ed.), The Role of Ground Beetles in Ecological and Environmental Studies. Intercept, Andover: 209–216.Google Scholar
  45. Rushton, S. P., Luff, L. M. & Eyre, M. D. 1991. Habitat characteristics of grassland Pterostichus species (Coleoptera, Carabidae). Ecological Entomology 16: 91–104.Google Scholar
  46. Sato, T. 1982. Phenology and wintering capacity of sporophytes and gametophytes of ferns native to Northern Japan. Oecologia 55: 53–61.Google Scholar
  47. Sato, T., Grabherr, G. & Washio, K. 1989. Quantitative comparison of fern-leaf development and fertility with respect to altitude in the Tirol, Central European Alps, Austria. Journal of Biogeography 16: 449–455.Google Scholar
  48. Seitter, H. 1977. Die Flora des Fürstentums Liechtenstein. Botanische-Zoologische Gesellschaft, Liechtenstein — Sargans — Werdenberg, Vaduz.Google Scholar
  49. Siepel, H., Meijer, J., Mabelis, A. A. & den, Boer, M. H. 1989. A tool to assess the influence of management practices on grassland surface macrofaunas. Journal of Applied Entomology 108: 271–290.Google Scholar
  50. Smith, R. S. & Jones, L. 1991. The phenology of mesotrophic grassland in the Pennine Dales, northern England: historic hay cutting dates, vegetation variation and plant species phenologies. Journal of Applied Ecology 28: 42–59.Google Scholar
  51. Smits, A. J. M., de, Lyon, M. J. H., van der, Velde, G., Steentjes, P. L. M. & Roelofs, J. G. M. 1988. Distribution of the three nymphaeid macrophytes (Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze) in relation to alkalinity and uptake of inorganic carbon. Aquatic Botany 32: 45–62.Google Scholar
  52. ter, Braak, C. J. F. 1987a. Ordination. In: Jongman, R. H. G., ter, Braak, C. J. F. & van, Tongeren, O. F. R. (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen: 91–173.Google Scholar
  53. ter Braak, C. J. F. 1987b. Unimodal models to relate species to environment. Doctoral thesis, University of Wageningen.Google Scholar
  54. ter, Braak, C. J. F. 1987c. The analysis of vegetation-environment relationships by canonical correspondence analysis. vegetatio 69: 69–77.Google Scholar
  55. ter, Braak, C. J. F. 1990a. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen, 35 pp.Google Scholar
  56. ter, Braak, C. J. F. 1990b. CANOCO — a FORTRAN program for CANOnical COmmunity ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis, version 3.10. Microcomputer Power, Ithaca, New York.Google Scholar
  57. ter, Braak, C. J. F. & Looman, C. W. N. 1986. Weighted averaging, logistic regression, and the Gaussian response model. Vegetatio 65: 3–11.Google Scholar
  58. ter, Braak, C. J. F. & Looman, C. W. N. 1987. Regression. In: Jongman, R. H. G., ter, Braak, C. J. F. & van, Tongeren, O. F. R. (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen: 29–77.Google Scholar
  59. ter, Braak, C. J. F. & Prentice, I. C. 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.Google Scholar
  60. ter, Braak, C. J. F. & van, Dam, H. 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.Google Scholar
  61. Tuhkanen, S. 1980. Climatic parameters and indices in plant geography. Acta Phytogeographica Suecica 67: 1–105.Google Scholar
  62. van, Dam, H. & Martens, A. 1993. Diatoms on herbarium macrophytes as indicators for water quality. Hydrobiologia 269/270: 437–445.Google Scholar
  63. Verdonschot, P. F. M. 1987. Aquatic Oligochaetes in ditches. Hydrobiologia 155: 283–292.Google Scholar
  64. Warne, T. R. & Lloyd, R. M. 1980. The role of spore germination and gametophyte development in habitat selection: Temperature responses in certain temperate and tropical ferns. Bulletin of the Torrey Botanical Club 107: 57–64.Google Scholar
  65. Whittier, D. P. 1971. The value of ferns in an understanding of the alternation of generations. Bioscience 21: 225–227.Google Scholar
  66. Yee, T. W. & Mitchell, N. D. 1991. Generalized additive models in plant ecology. Journal of Vegetation Science 2: 587–602.Google Scholar
  67. Økland, R. H. 1990. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia Supplement 1: 1–233.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. Odland
    • 1
  • H. J. B. Birks
    • 2
    • 3
  • J. M. Line
    • 4
  1. 1.NINA c/o Botanical InstituteUniversity of BergenBergenNorway
  2. 2.Botanical InstituteUniversity of BergenBergenNorway
  3. 3.Environmental Change Research CentreUniversity College LondonLondonUK
  4. 4.University of Cambridge Computer LaboratoryCambridgeUK

Personalised recommendations