Vegetatio

, Volume 120, Issue 2, pp 91–113 | Cite as

Tree species composition and rain forest-environment relationships in the middle Caquetá area, Colombia, NW Amazonia

  • Joost E. Duivenvoorden
Article

Abstract

As part of an integrated forest vegetation and soil survey, tree species composition (DBH ≥10 cm) was recorded in 95 plots of 0.1 ha, distributed over the principal physiographic units in the middle Caquetá area, Colombian Amazonia. A total of 1077 tree species was found, classified into 271 genera and 60 families. Leguminosae and Sapotaceae show high familial importance values in all physiographic units. Lauraceae, Chrysobalanaceae, Moraceae, and Lecythidaceae are more important on well drained (flood plain or upland) soils, while Palmae, Guttiferae, Bombacaceae, and Apocynaceae are more important in swamps and on podzolised (‘white sand'rs) soils. Plots on well drained soils show a lower degree of dominance than plots in swamps or on podzolised (‘white sand’) soils. The composition of the most dominant species in the plots changes continuously. Most species (59%) are only recorded in one plot. Individual plot pairs generally show a low overlap of about 2–5 tree species, resulting in Jaccard coefficients below 20%.

complementary to a previous forest classification based on TWINSPAN analyses, detrended and canonical correspondence analyses were carried out, using CANOCO 3.1. Despite of a low amount of tree species variance explained (only 6.2% by the first two canonical axes), meaningful patterns of tree species composition were recognised. These are most strongly related to drainage, flooding, humus forms, and soil nutrient status. Forest types are well separated in the CCA ordination diagram. The most frequently found tree species are listed according to their preference with respect to drainage, flooding, and soil nutrient status.

Tree species composition in the well drained upland forests was analysed separately. In view of the model explaining high NW Amazonian tree species diversity on the basis of dense community packing and high beta diversity along soil gradients, the canonical analysis here focused on the effect of soils. By means of partial canonical ordination it was found that patterns of tree species composition depended significantly on soil properties, even though the edaphic component explains only a small fraction of the tree species variance. The results show that the well drained uplands of the middle Caquetá area are covered by a complex of two intergrading tree species assemblages. The first assemblage (community of Goupia glabra-Clathrotropis macrocarpa) is associated to some-what less poor, clayey soils developed in Andean origin deposits or Tertiary sediments from the Pebas formation. The second assemblage (community of Swartzia schomburgkii-Clathrotropis macrocarpa) shows affinities to very poor, loamy soils developed in parent materials derived from the Guiana shield. This simple dichotomous pattern of geology, soils, and forest types is incompatible with concepts of high soil heterogeneity and associated beta diversity controlling tree species diversity in well drained uplands of NW Amazonia. The gradient length of tree species in the detrended correspondence analysis was low (3.7 SD), also suggesting a low beta diversity.

Key words

Araracuara Beta diversity Canonical correspondence analysis Detrended correspondence analysis Humid tropical forest Partial canonical ordination Tropical soils 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A. B. 1981. White-sand vegetation of Brazilian Amazonia. Biotropica 13: 199–210.Google Scholar
  2. Ashton, P. S. & Hall, P. 1992. Comparisons of structure among mixed dipterocarp forests of north-western Borneo. Journal of Ecology 80: 459–481.Google Scholar
  3. Ashton, P. S. 1963. Some problems arising in the sampling of mixed rain forest communities for floristic studies. Symposium on ecological research in humid tropic vegetation. Kuching, Sarawak, July 1963, pp. 235–240.Google Scholar
  4. Ashton, P. S. 1992. Species richness in plant communities. In: Fiedler, P. L. & Jain, S. K. (eds), Conservation biology. Chapman and Hall, New York/London, pp. 3–22.Google Scholar
  5. Austin, M. P., Ashton, P. S. & Greig-Smith, P. 1972. The application of quantitative methods to vegetation survey III. A re-examination of rain forest data from Brunei. Journal of Ecology 60: 305–324.Google Scholar
  6. Bauillie, I. C., Ashton, P. S., Court, M. N., Anderson, J. A. R., Fitzpatrick, E. A. & Tinsley, J. 1987. Site characteristics and the distribution of tree species in Mixed Dipterocarp Forest on Tertiary sediments in central Sarawak, Malaysia. Journal of Tropical Ecology 3: 201–220.Google Scholar
  7. Bongers, F. & Popma, J. 1988. Trees and gaps in a Mexican tropical rain forest. Ph.D. thesis (combined autorship), University of Utrecht, Utrecht.Google Scholar
  8. Borcard, D., Legendre, P. & Drapeau, P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.Google Scholar
  9. Crow, T. R. & Grigal, D. F. 1979. A numerical analysis of arborescent communities in the rain forest of the Luquillo Mountains, Puerto Rico. Vegetatio 40: 135–146.Google Scholar
  10. Dietvorst, P., van der, Maarel, E. & van der, Putten, H. 1982. A new approach to the minimal area of a plant community. Vegetatio 50: 77–91.Google Scholar
  11. Duivenvoorden, J. F. 1994a. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodiversity and Conservation 3: 685–715.Google Scholar
  12. Duivenvoorden, J. F. 1994b. Plant diversity, vegetation, and environment in the middle Caquetá basin of Colombian Amazonia. Ph.D. thesis, University of Amsterdam, Amsterdam.Google Scholar
  13. Duivenvoorden, J. F. & Lips, J. M. 1993. Ecología del paisaje del Medio Caquetá. Memoria explicativa de los mapas. Tropenbos-Colombia, SantaFé de Bogotá.Google Scholar
  14. Encarnación, F. 1985. Introducción a la flora y vegetación de la Amazonia peruana: estado actual de los estudios, medio natural y ensayo de una clave de determinación de las formaciones vegetales en la llanura amazónica. Candollea 40: 237–252.Google Scholar
  15. FAO 1977. Guidelines for soil profile description. FAO, Rome. 66 pp.Google Scholar
  16. FAO 1988. FAP/Unesco soil map of the world, revised legend. World Soil Resources Report 60, FAO, Rome. 138 pp.Google Scholar
  17. Gartlan, J. S., Newberry, D. M., Thomas, D. W. & Waterman, P. G. 1986. The influence of topography and soil phosphorus on the vegetation of Korup Forest Reserve, Cameroun. Vegetatio 65: 131–148.Google Scholar
  18. Gauch, H. G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge.Google Scholar
  19. Gentry, A. H. 1981. Distributional patterns and an additional species of the Passiflora vitifolia complex: Amazonian species diversity due to edaphically differentiated communities. Plant Systematics and Evolution 137: 95–105.Google Scholar
  20. Gentry, A. H. 1988a. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 1–34.Google Scholar
  21. Gentry, A. H. 1988b. Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Science USA 85: 156–159.Google Scholar
  22. Gentry, A. H. & Ortíz, R. 1993. Patrones de composición florística en la Amazonia peruana. In: Kalliola, R., Puhakka, M. & Danjoy, W. (eds), Amazonia peruana, vegetación húmeda tropical en el llano subandino. Proyecto Amazonia, Universidad de Turku (PAUT), Turku, and Oficina Nacional de Evalución de Recursos Naturales (ONERN), Lima, pp. 155–166.Google Scholar
  23. Greig-Smith, P. 1971. Application of numerical methods to tropical forest. In: Patil, G. P., Pielou, E. C. & Waters, W. E. (eds), Statistical Ecology, volume 3: Populations, Ecosystems and Systems Analysis. Pennsylvania State University Press, pp. 195–206.Google Scholar
  24. Hall, J. B. & Swaine, M. D. 1976. Classification and ecology of closed-canopy forest in Ghana. Journal of Ecology 64: 913–951.Google Scholar
  25. Hill, M. O. 1979a. DECORANA — a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca, New York.Google Scholar
  26. Hill, M. O. 1979b. TWINSPAN — a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, New York.Google Scholar
  27. Ho, C. C., Newberry, D. McC. & Poore, M. E. D. 1987. Forest composition and inferred dynamics in Jengka Forest Reserve, Malaysia. Journal of Tropical Ecology 3: 25–56.Google Scholar
  28. Holdridge, L. R., Grenke, W. C., Hathway, W. H., Liang, T. & Tosi, J. A. 1971. Forest environments in tropical life zones, a pilot study. Pergamon, Oxford.Google Scholar
  29. Hoorn, C. 1991. Nota geológica; La formación Pevas (‘Terciario Inferior Amazónico’): Depósitos Fluvio-lacustres del Mioceno Medio a Superior. Colombia Amazónica 5: 119–130.Google Scholar
  30. Hubbell, S. P. & Foster, R. B. 1983. Diversity of canopy trees in a neotropical forest and implications for conservation. In: Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds), Tropical rain forest: ecology and management. Blackwell, Oxford, pp. 24–41.Google Scholar
  31. Jans, L., Poorter, L., Van, Rompaey, R. S. A. R. & Bongers, F. 1993. Gaps and forest zones in tropical moist forest in Ivory Coast. Biotropica 25: 258–269.Google Scholar
  32. Johnston, M. H. 1992. Soil-vegetation relationships in a tabonuco forest community in the Luquillo Mountains of Puerto Rico. Journal of Tropical Ecology 8: 253–263.Google Scholar
  33. Junk, W. J. 1982. Ecology of swamps on the middle Amazon. In: Goodall, D. W. (ed.), Ecosystems of the World. Elsevier, Amsterdam, pp. 269–294.Google Scholar
  34. Junk, W. J. 1989. Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen, L. B., Nielsen, I. C. & Balslev, H. (eds). Tropical forests. Academic Press, London, pp. 47–64.Google Scholar
  35. Kahn, F. 1987. The distribution of palms as a function of local topography in Amazonian terra-firme forests. Experientia 43: 251–259.Google Scholar
  36. Kahn, F. & Castro, A. 1985. The palm community in a forest of central Amazonia. Biotropica 17: 210–216.Google Scholar
  37. Kahn, F. & Granville, J-J.de 1992. Palms in forest ecosystems of Amazonia. Springer-Verlag, Berlin.Google Scholar
  38. Kapos, V., Pallant, E., Bien, A. & Freskos, S. 1990. Gap frequencies in lowland rain forest sites on contrasting soils in Amazonian Ecuador. Biotropica 22: 218–225.Google Scholar
  39. Kent, M. & Ballard, J. 1988. Trends and problems in the application of classification and ordination methods in plant ecology. Vegetatio 78: 109–124.Google Scholar
  40. Kimmins, J. P. 1987. Forest ecology. Macmillan Publishing Company, New York.Google Scholar
  41. Knight, D. H. 1975. A phytosociological analysis of species-rich tropical forest on Barro Colorado Island, Panama. Ecological Monographs 45: 259–284.Google Scholar
  42. Köppen, W. 1936. Das geographische System der Klimate, In: Köppen, W. & Geiger, R. (eds), Handbuch der Klimatologie. Berlin.Google Scholar
  43. Kubitzki, K. 1989. The ecogeographical differentiation of Amazonian inundation forests. Plant Systematics and Evolution 162: 285–304.Google Scholar
  44. Kubitzki, K. & Ziburski, A. 1994. Seed dispersal in flood plain forests of Amazonia. Biotropica 26: 30–43.Google Scholar
  45. Lawson, G. W., Armstrong-Mensah, K. O. & Hall, J. B. 1970. A catena in tropical moist semi-deciduous forest near Kade, Ghana. Journal of Ecology 58: 371–398.Google Scholar
  46. Legendre, P. & Fortin, M. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.Google Scholar
  47. Lescure, J-P. & Boulet, R. 1985. Relationships between soil and vegetation in a tropical rain forest in French Guiana. Biotropica 17: 155–164.Google Scholar
  48. Lieberman, M., Lieberman, D., Hartshorn, G. S. & Peralta, R. 1985. Small-scale altitudinal variation in lowland wet tropical forest vegetation. Journal of Ecology 73: 505–516.Google Scholar
  49. Lips, J. M. & Duivenvoorden, J. F. 1991. Características morfológicas y químicas de salados en la cuenca Medio Caquetá, Amazonas, Colombia. Colombia Amazónica 5: 119–130.Google Scholar
  50. Mori, S. A., Boom, B. M., Carvalho, A. M.de & Santos, T. S.de 1983. Southern Bahian moist forests. Botanical Review 49: 155–232.Google Scholar
  51. Mori, S. A. & Becker, P. 1991. Flooding affects survival of Lecythidaceae in terra firme forest near Manaus, Brazil. Biotropica 23: 87–90.Google Scholar
  52. Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and Methods of Vegetation Ecology, Wiley & Sons, New York.Google Scholar
  53. Newberry, D. McC. 1991. Floristic variation within kerangas (heath) forest: re-evaluation of data from Sarawak and Brunei. Vegetatio 96: 43–86.Google Scholar
  54. Newberry, D. McC. & Proctor, J. 1984. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. IV. Associations between tree distribution and soil factors. Journal of Ecology 72: 475–493.Google Scholar
  55. Oldeman, R. A. A. 1983. Tropical rain forest, architecture, silvigenesis and diversity. In: Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds), Tropical rain forests: ecology and management. Blackwell, Oxford, pp. 139–150.Google Scholar
  56. Oldeman, R. A. A. 1989. Dynamics in tropical rain forests. In: Holm-Nielsen, L. B., Nielsen, I. C. & Balslev, H. (eds), Tropical forests. Academic Press, London, pp. 3–21.Google Scholar
  57. Oldeman, R. A. A. 1990. Forests: elements of silvology. Springer-Verlag, Berlin.Google Scholar
  58. Pires, J. M. & Prance, G. T. 1985. The vegetation types of the Brazilian Amazon. In: Prance, G. T. & Lovejoy, T. E. (eds), Key environments: Amazonia, Pergamon, Oxford, pp. 109–145.Google Scholar
  59. Poulsen, A. D. & Balslev, H. 1991. Abundance and cover of ground herbs in an Amazonian rain forest. Journal of vegetation Science 2: 315–322.Google Scholar
  60. Prance, G. T. 1979. Notes on the vegetation of Amazonia III: the terminology of Amazonian forest types subject to inundation. Brittonia 31: 26–38.Google Scholar
  61. Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W. 1983. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. Journal of Ecology 71: 237–260.Google Scholar
  62. Proradam. 1979. La Amazonia Colombiana y sus recursos. Proyecto radargramétrico del Amazonas. República de Colombia, Bogotá.Google Scholar
  63. Rompaey, R. S. A. R. van 1993. Forest gradients in West-Africa: a spatial gradient analysis. Doctoral thesis, Agricultural University, Wageningen.Google Scholar
  64. Rouw, A. de 1991. Rice, weeds and shifting cultivation in a tropical rain forest. Doctoral thesis, Agricultural University, Wageningen.Google Scholar
  65. Rouw, A.de, Vellema, H. C. & Blokhuis, W. A. 1990. Land unit survey of the Taï region, south-west Côte d'Ivoire. The Tropenbos Foundation, Ede.Google Scholar
  66. Sánchez, P., Couto, W. & Buol, S. W. 1982. The Fertility Capability Soil Classification System: interpretation, applicability and modification. Geoderma 27: 283–309.Google Scholar
  67. SSS (Soil Survey Staff) 1990. Keys to soil taxonomy (fourth edition). SMSS technical monograph no. 19. Blacksburg, Virginia.Google Scholar
  68. SYSTAT 1992. SYSTAT for the Macintosh, version 5.2. SYSTAT, Evanston.Google Scholar
  69. Ter, Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  70. Ter, Braak, C. J. F. 1987a. CANOCO-a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Wageningen.Google Scholar
  71. Ter, Braak, C. J. F. 1987b. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.Google Scholar
  72. Ter, Braak, C. J. F. 1987c. Ordination. In: Jongman, R. G. H., Ter, Braak, C. J. F. & Van, Tongeren, O. F. R. (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen, pp. 91–173.Google Scholar
  73. Ter, Braak, C. J. F. 1990. Update Notes: CANOCO version 3.1. Agricultural Mathematics Group, Wageningen.Google Scholar
  74. Ter, Steege, H., Jetten, V. G., Polak, M. A. & Werger, M. J. A. 1993. Tropical rain forest types and soil factors in a watershed area in Guyana. Journal of Vegetation Science 4: 705–716.Google Scholar
  75. Tracey, J. G. 1969. Edaphic differentiation of some forest types in eastern Australia I. Soil physical factors. Journal of Ecology 57: 805–816.Google Scholar
  76. Tuomisto, H. & Ruokalainen, K. 1993. Distribution of Pteridophyta and Melastomataceae along an edaphic gradient in an Amazonian rain forest. Journal of Vegetation Science 4: 25–34.Google Scholar
  77. UNESCO 1973. Clasificación internacional y cartografía de la vegetación. Ecology and conservation, 6. Unesco, Paris.Google Scholar
  78. Van der, Hammen, T., Duivenvoorden, J. F., Lips, J. M., Urrego, L. E. & Espeio, N. 1992. Late Quaternary of the middle Caquetá River area (Colombian Amazonia). Journal of Quaternary Science 7: 45–55.Google Scholar
  79. Van der, Werff, H. 1992. Substrate preference of Lauraceae and ferns in the Iquitos area, Peru. Candollea 47: 11–20.Google Scholar
  80. Wartenberg, D., Ferson, S. & Rohlf, F. J. 1987. Putting things in order: a critique of detrended correspondence analysis. The American Naturalist 129: 434–448.Google Scholar
  81. Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.Google Scholar
  82. Whitmore, T. C. 1984. Tropical rain forests of the Far East. Clarendon Press, Oxford.Google Scholar
  83. Whitmore, T. C. 1989. Tropical forest nutrients, where do we stand? A tour de horizon. In: Proctor, J. (ed.), Mineral nutrients in tropical forest and savanna ecosystems. Blackwell, Oxford, pp. 1–13.Google Scholar
  84. Whitmore, T. C. 1990. An introduction to tropical rain forests. Clarendon Press, Oxford.Google Scholar
  85. Wolf, J. H. D. 1993. Ecology of epiphytes and epiphyte communities in montane rain forests, Colombia. Doctoral thesis, University of Amsterdam, Amsterdam.Google Scholar
  86. Worbes, M., Klinge, H., Revilla, J. D. & Christopher, M. 1992. On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. Journal of Vegetation Science 3: 553–564.Google Scholar
  87. Young, K. R. & Léon, B. 1989. Pteridophyte species diversity in the central Peruvian Amazon: importance of edaphic specialization. Brittonia 41: 388–395.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Joost E. Duivenvoorden
    • 1
  1. 1.Hugo de Vries LaboratoryUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations