Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 30, Issue 2, pp 135–140 | Cite as

Reconsideration of the term ‘vitrification’ as used in micropropagation

  • Debergh P. 
  • Aitken-Christie J. 
  • Cohen D. 
  • Grout B. 
  • Arnold S. von 
  • Zimmerman R. 
  • Ziv M. 
Article

Abstract

The term vitrification is currently used to describe two types of processes related to tissue-cultured plant material. The first is used to describe organs and tissues having an abnormal morphological appearance and physiological function. The second is used to describe the transition from liquid to solid state, i.e. the formation of ice during low temperature storage of in vitro cultured cells, tissues and organs. Use of the same term to define two greatly different processes in the same research area can only lead to confusion, especially for key words. Thus it is appropriate to reconsider the usage of vitrification in the first sense mentioned above. It is recommended that the term vitrification should no longer be used to indicate plant material with an abnormal morphological appearance and physiological function, and should be substituted by the term ‘hyperhydricity’.

Key words

hyperhydricity in vitro preferred usage vitrification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken-Christie J & Jones C (1987) Towards automation: radiata pine shoot hedges in vitro. Plant Cell Tiss. Org. Cult. 8: 185–196Google Scholar
  2. Beauchesne G (1981) Les milieux minéraux utilisés en culture et leur incidence sur l'apparition de boutures d'aspect pathologique. C.R. Acad. Agric. Paris 67: 1389–1397Google Scholar
  3. Boxus P, Druart P & Brasseur E (1978) Rapport d'activités du Centre de Recherches de Gembloux: 126–127Google Scholar
  4. Brainerd KE & Fuchigami LH (1981) Acclimatization of aseptically cultured apple plants to low relative humidity. J. Amer. Soc. Hort. Sci. 106: 515–518Google Scholar
  5. Brainerd KE, Fuchigami LH, Kwiatkowski S & Clark CS (1981) Leaf anatomy and water stress of aseptically cultured ‘Pixy’ plum grown under different environments. HortScience 16: 173–175Google Scholar
  6. Capellades M, Fontarnau R, Carulla C & Debergh P (1990) Environment influences anatomy of stomata and epidermal cells in tissue cultured Rosa multiflora. J. Amer. Soc. Hort. Sci. 115: 141–145Google Scholar
  7. Debergh P (1983) Effects of agar brand and concentration on the tissue culture medium. Physiol. Plant. 59: 270–276Google Scholar
  8. Debergh P (1988) Improving mass propagation of in vitro plantlets. In: The organizing Committee Intl. Symp. High Technology in Protected Cultivation (Ed). Horticulture in High Technology Era, Tokyo (pp 45–57)Google Scholar
  9. Debergh P, Harbaoui Y & Lemeur R (1981) Mass propagation of globe artichoke (Cynara scolymus): evaluation of different hypotheses to overcome vitrification with special reference to water potential. Physiol. Plant. 53: 181–187Google Scholar
  10. DeProft M, Maene LJ & Debergh P (1985) Carbon dioxide and ethylene evolution in the culture atmosphere of Magnolia soulangeana cultured in vitro. Physiol. Plant. 65: 375–379Google Scholar
  11. Dillen W & Buysens S (1989) A simple technique to over-come vitrification in Gypsophila paniculata. Plant Cell Tiss. Org. Cult. 19: 181–188Google Scholar
  12. Earle ED & Langhans RW (1975) Carnation propagation from shoot tips cultured in liquid medium. HortScience 10: 608–610Google Scholar
  13. Gaspar T, Kevers C, Debergh P, Maene L, Paques M & Boxus P (1987) Vitrification: orphological, physiological and ecological aspects. In: Bonga JM & Durzan DJ (Eds) Cell and Tissue Culture in Forestry, Vol 1 (pp 152–166). Kluwer Academic Press Publ, DordrechtGoogle Scholar
  14. Grout BWW & Aston H (1977) Transplanting of cauliflower plants regenerated from meristem culture 1. Water loss and water transfer related to changes in leaf wax and to xylem regeneration. Hort. Res. 17: 1–7Google Scholar
  15. Henderson Dictionary of Biological Terms, Ninth Edition, Longman, LondonGoogle Scholar
  16. Kevers C & Gaspar T (1985) Soluble membrane and wall peroxidases, phenylalanine ammonialyase and lignin changes in relation to vitrification of carnation tissues cultured in vitro. J. Plant Physiol. 118: 41–48Google Scholar
  17. Leshem B, Shalev DP & Izhar S (1988) Cytokinin as an inducer of vitrification in melon. Ann. Bot. 61: 255–260Google Scholar
  18. Letouzé R & Daguin F (1983) Manifestation spontanée d'une croissance anormale en culture in vitro. Recherche de marqueurs métaboliques. Rev. Can. Biol. Exp. 42: 23–28Google Scholar
  19. Letouzé R & Daguin F (1987) Control of vitrification and hypolignification process in Salix babylonica cultured in vitro. Acta Hort. 212: 185–191Google Scholar
  20. Meryman H & Williams R (1985) Basic principles of freezing injury to plant cells: natural tolerance and approaches to cryopreservation. In: Kartha KK (Ed) Cryopreservation of Plant Cells and Organs, Chapter 2 (pp 13–47). CRC Press, Boca Raton, FloridaGoogle Scholar
  21. Paques M & Boxus P (1987) A model to learn ‘vitrification’, the rootstock apple M.26. Present results. Acta Hort. 212: 193–210Google Scholar
  22. Pasqualetto PL, Zimmerman RH & Fordham I (1988) The influence of cation and gelling agent concentration on vitrification of apple cultivars in vitro. Pant Cell Tiss. Org. Cult. 14: 31–40Google Scholar
  23. Preece JE & Sutter EG (1991) Acclimatization of micropropagated plants to the greenhouse and field. In: Debergh PC & Zimmerman RH (Eds) Micropropagation-Technology and Application (pp 71–93). Kluwer Academic Publ., DordrechtGoogle Scholar
  24. Short KC, Warburton J & Roberts AV (1987) In vitro hardening of cultured cauliflower plantlets to humidity. Acta Hort. 212: 329–334Google Scholar
  25. Sutter EG & Langhans RW (1982) Formation of epicuticular wax and its effect on water loss in cabbage plants regenerated from shoot-tip culture. Can. J. Bot. 60: 2896–2902Google Scholar
  26. Vanderschaeghe AM & Debergh PC (1987) Technical aspects of the control of the relative humidity in tissue culture containers. In: Ducaté G, Jacob M & Simeon A (Eds) Plant Micropropagation in Horticultural Industries (pp 68–76). Presses Universitaires, Liège, BelgiumGoogle Scholar
  27. vonArnold S & Eriksson T (1984) Effect of agar concentration on growth and anatomy of adventitious shoots of Picea abies (L) Karst. Plant Cell Tiss. Org. Cult. 3: 257–264Google Scholar
  28. Wetzstein HY & Sommer HE (1982) Leaf anatomy of tissue cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization. Amer. J. Bot. 69: 1579–1586Google Scholar
  29. Ziv M (1991) Vitrification: morphological and physiological disorders of in vitro plants. In: Debergh PC & Zimmerman RH (Eds) Micropropagation—Technology and Application (pp 45–69). Kluwer Academic Publ., DordrechtGoogle Scholar
  30. Ziv M & Ariel T (1988) The relationship between cell wall deformity and stomatal malfunction in the leaves of carnation in vitro. Proc. Intl. Soc. Plant Molecular Biol. Congress, Jerusalem: 425Google Scholar
  31. Ziv M & Ariel T (1990) The effect of culture condition on vitrification and stomatal cell wall deformation in leaves of carnation plants in vitro. Plant Sci. (in press)Google Scholar
  32. Ziv M, Meir G & Halevy A (1983) Factors influencing the production of hardened carnation plantlets in vitro. Plant Cell Tiss. Org. Cult. 2: 55–60Google Scholar
  33. Ziv M, Schwarts A & Fleminger D (1987) Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; implications for hardening. Plant Sci. 52: 127–134Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Debergh P. 
    • 1
  • Aitken-Christie J. 
    • 2
  • Cohen D. 
    • 3
  • Grout B. 
    • 4
  • Arnold S. von 
    • 5
  • Zimmerman R. 
    • 6
  • Ziv M. 
    • 7
  1. 1.Laboratory of HorticultureState University GhentGhentBelgium
  2. 2.Forest Research InsituteRotoruaNew Zealand
  3. 3.Plant Physiology DivisionD.S.I.R.Palmerston NorthNew Zealand
  4. 4.The Merks EstateNOVALAL PLCGreat DunmowUK
  5. 5.Department Forest GeneticsSwedish University of Agricultural SciencesUppsalaSweden
  6. 6.USDA-ARS-Fruit LaboratoryBeltsvilleUSA
  7. 7.Department Agricultural BotanyThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations