International Journal of Fracture

, Volume 29, Issue 2, pp 101–109 | Cite as

The Hopkinson pressure bar: an alternative to the instrumented pendulum for Charpy tests

  • C. Ruiz
  • R. A. W. Mines


In the instrumented Charpy pendulum, strain gauges mounted on the hammer react to strain waves resulting from the impact against the specimen by providing a jagged strain-time trace. This is electronically filtered to provide a smooth curve taken to represent the variation with time of the load applied to the specimen. The Hopkinson pressure bar (HPB) described here provides an alternative method of testing that does not require electronic filtering and simplifies data collection and interpretation.


Fracture Toughness Strain Gauge Impact Velocity Stress Wave Engineer Fracture Mechanics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Dans un mouton pendule Charpy instrumenté, les jauges de contrainte disposées sur le marteau réagissent à l'onde de déformation provenant de l'impact sur l'éprouvette en produisant une trace irrégulière sur un graphe déformation/temps. Un filtrage électronique permet d'obtenir une courbe régulière, que l'on adopte pour représenter la variation dans le temps ou la charge appliquée à l'éprouvette. Le dispositif HPB présenté dans l'étude constitue une autre méthode d'essai, qui ne nécessite pas de filtrage électronique, et qui simplifie la collecte et l'interprétation des données expérimentales.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T.E. Stanton and R.G.C. Batson, Proceedings Institute of Civil Engineers 111 (1921) 67–100.Google Scholar
  2. [2]
    Brittle Fracture in Steel, HMSO, London (1962).Google Scholar
  3. [3]
    G.M. Boyd, Brittle Fracture in Steel Structures, Butterworths, London (1970).Google Scholar
  4. [4]
    H.M. Schnadt, Contribution to discussions in [2]. Also reported by G.M. Boyd.Google Scholar
  5. [5]
    J.C. Radon and C.E. Turner, Engineering Fracture Mechanics 1, 3 (1969) 165–170.CrossRefGoogle Scholar
  6. [6]
    ASTM-STP 466, Impact Testing of Metals, American Society for Testing and Materials, Philadelphia (1970).Google Scholar
  7. [7]
    ASTM-STP 563, Instrumented Impact Testing, American Society for Testing and Materials, Philadelphia (1974).Google Scholar
  8. [8]
    CSNI Specialist Meeting on Instrumental Precracked Charpy Testing, Electric Power Research Institute, EPRI-NP-2102-LD (November 1981).Google Scholar
  9. [9]
    W.L. Server, Journal of Testing and Evaluation 6 (1978) 29–34.CrossRefGoogle Scholar
  10. [10]
    D.P.G. Lidbury and R.P. Birkett, UKAEA Risley Nuclear Laboratories, private communication of unpublished work (September 1984).Google Scholar
  11. [11]
    T. Kobayashi, Engineering Fracture Mechanics 19 (1984) 49–65.CrossRefGoogle Scholar
  12. [12]
    D.R. Ireland, loc. cit. [8].Google Scholar
  13. [13]
    J.F. Kalthoff, S. Winkler and J. Beinert, International Journal of Fracture, 13 (1979) RCR 528–531.Google Scholar
  14. [14]
    R.S.J. Corran, R.A.W. Mines and C. Ruiz, International Journal of Fracture 17 (183) 129–144.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1985

Authors and Affiliations

  • C. Ruiz
    • 1
  • R. A. W. Mines
    • 1
  1. 1.Department of Engineering ScienceOxford UniversityOxfordUK

Personalised recommendations