, Volume 298, Issue 1–3, pp 141–157 | Cite as

Laboratory culture of fairy shirmps using baker's yeast as basic food in a flow-through system

  • Alejandro M. Maeda-Martínez
  • Hortencia Obergón-Barboza
  • Henri J. Dumont
4. Aquaculture and hatching


We designed and standardized a culture method for freshwater anostracans using diets free of live algae.Thamnocephalus platyurus andBranchinecta lindahli were used as test organisms.

We used baker's yeast as basic food and added inert particles (clay or amorphic silicium dioxide) to improve the digestion of the yeast. A flow-through culture system was used, according to a fixed feeding schedule, to supply separately, culture medium (tap water), food, and inert particle suspensions. Three variants with baker's yeast as basic, food were compared for survival, growth, and reproduction. A diet of solely baker's yeast (diet 1) or baker's yeast supplemented with vegetal oil containing ß-carotene (diet 2) was unsuitable for reproduction ofT. platyurus. Cyst production was only achieved when diet 2 was supplemented with fish oil andSpirulina powder (diet 3). This suggests that not only a digestibility problem, but also nutritional deficiencies are present in baker's yeast.

Key words

Thamnocephalus Branchinecta growth filter-feeders feeding clay silicium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, A. J. & L. Brendonck, 1995. Evaluation of agro-industrial wastes as diet for culture of the fairy shrimpStreptocephalus proboscidues (Frauenfeld, 1873) (Crustacea: Branchiopoda: Anostraca). Hydrobiologia 298 (Dev. Hydrobiol. 103): 167–173.Google Scholar
  2. Anderson, G. & Sheau-Yu Hsu, 1990. Growth and maturation of a North American fairy shrimp,Streptocephalus seali (Crustacea: Anostraca): a laboratory study. Freshwat. Biol. 24: 429–442.Google Scholar
  3. Banta, A. M., 1921. A convenient culture medium for Daphnids. Science 53: 557.Google Scholar
  4. Baqai, I. U., 1963. Studies on the postembryonic development of the fairy shrimpSteptocephalus seali Ryder. Tulane Stud. Zool. 10: 91–120.Google Scholar
  5. Baylor, E. R. & W. H. Sutcliffe, Jr., 1963. Dissolved organic matter in seawater as a source of particulate food. Limnol. Oceanogr. 8: 369–371.Google Scholar
  6. Belk, D., 1972. The biology and ecology ofEulimnadia antlei Mackin (Conchostraca). S. West. Nat. 16: 297–305.Google Scholar
  7. Belk, D., 1975. Key to the Anostraca (fairy shrimps) of North America. S. West. Nat. 20: 91–103.Google Scholar
  8. Belk, D., 1977. Zoogeography of the Arizona fairy shrimps (Crustacea: Anostraca). J. Ariz. Acad. Sci. 12: 70–78.Google Scholar
  9. Brendonck, L., G. Uyttersprot & G. Persoone, 1990. A culture system for fairy shrimps (Crustacea, Anostraca). Aquacult. Eng 9: 267–283.CrossRefGoogle Scholar
  10. Brown, D. R., 1969. Regulation of egg hatching of a fairy shrimpBrachinecta mackini Dexter (Crustacea: Branchiopoda: Anostraca) in astatic desert ponds. Diss. Abstr. 30B: 1511.Google Scholar
  11. Bunker, H. J., 1963. Microbial food. In C. Rainbow & A. H. Rose (eds), Biochemistry of industrial micro-organisms. Academic Press, London: 34–67.Google Scholar
  12. Coutteau, P., 1992. Baker's yeast as substitute for microalgae in the culture of filter-feeding organisms. Ph.D. Thesis, University of Ghent, Belgium, 402 pp.Google Scholar
  13. Coutteau, P. & P. Lavens, 1989. The use of yeast as single- cell protein in aquacultural diets. Med. Fac. Landbouww. Rijksuniv. Gent 54: 1583–1592.Google Scholar
  14. Coutteau, P., P. Lavens & P. Sorgeloos, 1990a. Baker's yeast as a potential substitute for live algae in aquaculture diets:Artemia as a case study. J. World Aquacult. Soc. 21: 1–9.Google Scholar
  15. Coutteau, P., P. Lavens, Ph. Leger & P. Sorgeloos, 1990b. Manipulated yeast diets as a partial algal substitute for rearing bivalve molluscs: Laboratory trials withTapes semidecussata. Med. Fac. Landbouww. Gent 55: 1597–1599.Google Scholar
  16. Coutteau, P., L. Brendonck, P. Lavens & P. Sorgeloos, 1992. The use of manipulated baker's yeast as an algal substitute for the laboratory culture of Anostraca. Hydrobiologia 234: 25–32.Google Scholar
  17. De Walsche, C., J. Mertens & H. J. Dumont, 1991. Observations on temperature optimum, cyst production, and survival ofStreptocephalus proboscideus (Frauenfeld, 1873) (Crustacea: Anostraca), fed different diets. Hydrobiologia 212: 21–26.Google Scholar
  18. Dimentman, Ch., I. Dor & F. D. Por, 1976. Comparative grazing efficiency of live species of fairy shirmp (Crustacea, Anostraca) from Israel, on sewage grownScenedesmus obliquus. In G. Persoone & E. Jaspers (eds), Proceeding of the 10th European Symposium on Marine Biology (1975), Universa Press, Wetteren, Belgium 1: 49–59.Google Scholar
  19. Eng, L. L., D. Belk & C. H. Eriksen, 1990. California Anostracea: Distribution, habitat, and status. J. Crust. Biol. 10: 247–277.Google Scholar
  20. Gaudin, F. A., 1960. Egg production ofStreptocephalus seali Ryder, with notes on the distinctions between certain North American streptocephalids. S. West. Nat. 5: 61–65.Google Scholar
  21. Gissler, C. F., 1883. Miscellaneous notes on the productive habits of Branchipodidae. In A. S. Packard, A monograph of the phyllopod Crustacea of North America with remarks on the order Phyllocarida. Ann. Rept. U.S. Geol. Geogr. Surv. Terr. 12. Sect. 2: 420–424.Google Scholar
  22. Herrera-Colmenera, N. I., 1986. Contribución a la biolo gía deStreptocephalus mackini Moore, 1966 (Branchiopoda: Anostraca) y posibilidades de su cultivo. Licentiate Thesis, Instituto Politécnico Nacional ENCB, México, D.F., Mexico.Google Scholar
  23. Horne, F., 1967. Effects of physical-chemical factors on the distribution and occurrence of some southeastern Wyoming phyllopods. Ecology 48: 472–477.Google Scholar
  24. Horne, F., 1971. Some effects of temperature and oxygen concentration on phyllopod ecology. Ecology 52: 343–347.Google Scholar
  25. Johnson, D. A., 1980. Evaluation of various diets for optimal growth and survival of selected life stages ofArtemia. In G. Persoone, P. Sorgeloos, O. Roels & E. Jaspers (eds), The Brine ShrimpArtemia. Universa Press, Wetteren, Belgium 3: 185–192.Google Scholar
  26. Jones, M. P., 1987. Applied Mineralogy, a quantitative approach. Graham & Trotman, London, 259 pp.Google Scholar
  27. Kharatyan, S. G., 1978. Microbes as food for humans. Ann. Rev. Microbiol. 32: 301–327.CrossRefGoogle Scholar
  28. Lake, P. S., 1969. The effect of temperature on growth, longevity and egg production inChirocephalus diaphanus Prevost (Crustacea: Anostraca). Hydrobiologia 33: 342–351.Google Scholar
  29. Lampert, W., 1976. A direct coupled, artificial two-step food chain for long-term experiments with filter-feeders at constant food concentrations. Mar. Biol. 37: 349–355.Google Scholar
  30. Lavens P. & P. Sorgeloos, 1987. The cryptobiotic state ofArtemia cysts, its diapause deactivation and hatching: a review. In P. Sorgeloos, D. A. Bengston, W. Decleir & E. Jaspers (eds),Artemia research and its applications 3: 27–63.Google Scholar
  31. MacKay, W. P., S. J. Loring, T. M. Frost & W. G. Whiteford, 1990. Population dynamics of a playa community in the Chihuahuan Desert. S. West. Nat. 35: 393–402.Google Scholar
  32. Maeda-Martínez, A. M., 1991. Distribution of species of Anostraca, Notostraca, Spinicaudata, and Laevicaudata in Mexico. Hydrobiologia 212: 209–219.Google Scholar
  33. Meade, J. W. & L. Bulkowski-Cummings, 1987. Acceptability of fairy shrimp (Streptocephalus seali) as a diet for larval fish. The Progressive Fish-Culturist 49: 217–219.CrossRefGoogle Scholar
  34. Mitchell, S. A., 1991. The growth rate and growth efficiency ofStrepcephalus macrourus (Crustacea, Anostraca) cultured on microalgae. Hydrobiologia 212: 1–10.Google Scholar
  35. Moore, W. G., 1957. Studies on the laboratory culture of Anostraca. Trans. am. micros. Soc. 76: 159–173.Google Scholar
  36. Murken, J., 1976. Feeding experiments withMytilus edulis L. at small laboratory scale. In G. Persoone & E. Jaspers (eds), Proceedings 10th European Symposium on Marine Biology (1975), Universa Press, Wetteren, Belgium 1: 273–284.Google Scholar
  37. Murugan, G. & H. J. Dumont, 1995. Influence of light, DMSO and glycerol on the hatchability ofThamnocephalus platyurus Packard cysts. Hydrobiologia 298 (Dev. Hydrobiol. 103):175–178.Google Scholar
  38. Peppler, H. J., 1969. Food Yeasts. In A. H. Rose & J. S. Harrison (eds), The Yeasts. Academic Press, London 1: 421–462.Google Scholar
  39. Persoone, G. & P. Sorgeloos, 1975. Technological improvements for the cultivation of invertebrates as food for fishes and crustaceans. I. Devices and methods. Aquaculture 6:–289.CrossRefGoogle Scholar
  40. Prophet, C. W., 1963a. Egg production by laboratory cultured anostraca. S. West. Nat. 8: 32–37.Google Scholar
  41. Prophet, C. W., 1963b. Some factors influencing the hatching of Anostraca eggs. Trans. Kans. Acad. Sci. 66: 150–159.Google Scholar
  42. Prophet, C. W., 1963c. Physical-chemical characteristics of habitats and seasonal occurrence of some Anostraca in Oklahoma and Kansas. Ecology 44: 798–801.Google Scholar
  43. Rodríguez-García, M. A., 1990. Cultivo en laboratorio deStreptocephalus mackini Moore, 1966 (Crustacea: Anostraca). Licentiate Thesis, Instituto Politécnico Nacional, ENCB, México, D. F. Mexico.Google Scholar
  44. Sam, S. T. & S. Krishnaswamy, 1979. Effect of osmomolarity of the medium upon hatching of undried eggs ofSteptocephalus dichotomus Baird (Anostraca: Crustacea). Arch. Hydrobiol. 86: 125–130.Google Scholar
  45. Scott, S. R. & A. A. Grigarick, 1979. Lab oratory studies of factors affecting egg hatch ofTriops longicaudatus (LeConte) (Notostraca: Triopsidae). Hydrobiologia 63: 145–152.Google Scholar
  46. Sluzhevskaya, E. B., 1975, Effect of the type of food on the growth rate, maturation, and life-span ofStreptocephalus torvicornis (Waga). Hydrobiol. J. 11: 82–83.Google Scholar
  47. Sluzhevskaya-Drobyskeva, E. B., 1982. Effect of temperature and feed on the growth, maturation and survival rate ofStreptocephalus torvicornis (Waga). Hydrobiol. J. 18: 95–98.Google Scholar
  48. Soeder, C. J., 1980. Massive cultivation of microalgae: Results and prospects. Hydrobiologia 72: 197–209.CrossRefGoogle Scholar
  49. Sorgeloos, P. & G. Persoone, 1972. Three simple culture devices for aquatic invertebrates and fish larvae with continuous recirculation of the medium. Mar. Biol. 15: 251–254.Google Scholar
  50. Sorgeloos, P., 1973. Firts report on the triggering effect of light on the hatching mechanism ofArtemia salina dry cysts. Mar. Biol. 22: 75–76.Google Scholar
  51. Van der Linden, A., R. Blust & W. Decleir. 1985. The influence of light on the hatching ofArtemia cysts (Anostraca, Branchiopoda, Crustacea). J. exp. mar. Biol. Ecol. 92: 207–214.CrossRefGoogle Scholar
  52. Watanabe, T., Ch. Kitajima & S. Fujita, 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34: 115–143.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Alejandro M. Maeda-Martínez
    • 1
  • Hortencia Obergón-Barboza
    • 1
  • Henri J. Dumont
    • 1
  1. 1.Laboratory of Animal EcologyUniversity of GhentGhentBelgium

Personalised recommendations