, Volume 64, Issue 1, pp 3–14 | Cite as

North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer

  • Samuel N. Goward
  • Compton J. Tucker
  • Dennis G. Dye


Spectral vegetation index measurements derived from remotely sensed observations show great promise as a means to improve knowledge of land vegetation patterns. The daily, global observations acquired by the Advanced Very High Resolution Radiometer, a sensor on the current series of U.S. National Oceanic and Atmospheric Administration meteorological satellites, may be particularly well suited for global studies of vegetation. Preliminary results from analysis of North American observations, extending from April to November 1982, show that the vegetation index patterns observed correspond to the known seasonality of North American natural and cultivated vegetation. Integration of the observations over the growing season produced measurements that are related to net primary productivity patterns of the major North American natural vegetation formations. Regions of intense cultivation were observed as anomalous areas in the integrated growing season measurements. These anomalies can be explained by contrasts between cultivation practices and natural vegetation phenology. Major new information on seasonality, annual extent and interannual variability of vegetation photosynthetic activity at continental and global scales can be derived from these satellite observations.


Continental-scale vegetation observation Spectral vegetation index NOAA-7 Advanced Very High Resolution Radiometer Seasonality Integrated growing season Net primary productivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajtay G. L., Ketner P. & Duigneand P., 1979. Terrestrial primary production and phytomass, In: B. Bolin, E. T. Degans, S. Kempe & P. Ketner (eds.), The global carbon cycle, pp. 129–181, SCOPE Report 13, John Wiley, New York.Google Scholar
  2. Asrar G., Fuchs M., Kanemasu E. T. & Hatfield J. L., 1984. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agro. J. 76: 300–306.Google Scholar
  3. Bauer M. E., Daughtry C. S. T. & Vanderbilt V. C., 1981. Spectral-agronomic relations of corn, soybeans, and wheat canopies. Tech. Report 091281. LARS-Purdue University, West Lafayette, Indiana.Google Scholar
  4. Blair B. O. & Baumgardner M. F., 1977. Detection of green and brown wave in hardwood canopy covers using multi-date, multispectral data from Landsat-I. Agro. J. 69: 808–811.Google Scholar
  5. Box E. O., 1981. Macroclimate and plant forms: An introduction to predictive modeling in phytogeography. Tasks in Vegetation Science, 1 (H. Lieth, series editor), Dr. W. Junk, The Hague.Google Scholar
  6. Bunnik N. J. J., 1978. The multispectral reflectance of short-wave radiation by agricultural crops in relation with their morphological and optical properties. H. Veenman & Zonen, Wageningen, The Netherlands, 172 pp.Google Scholar
  7. Colwell J. E., 1974. Vegetation canopy reflectance. Remote Sensing Environ. 3: 175–183.Google Scholar
  8. Colwell R. N., 1956. Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hildgardia 26 (5): 223–286.Google Scholar
  9. Committee for World Atlas of Agriculture, 1968. World atlas of agriculture, Instituto Geografico de Agostini, Novara, Italy.Google Scholar
  10. Curran P. J., 1983. Multispectral remote sensing for the estimation of green leaf area index. Phi T Roy A 309: 257–270.Google Scholar
  11. Daughtry C. S. T., Gallo K. D. & Bauer M. E., 1982. Spectral estimates of solar radiation intercepted by corn canopies. Agristars Tech. Report SR-PZ-04236, Purdue University, West Lafayette, IN.Google Scholar
  12. Deering, D. W., Rouse, Jr. J. W., Haas, R. H. & Schell, J. S., 1975. Measuring forage production of grazing units from Landsat MSS data. In: 10th International Symposium on Remote Sensing of Environment, ERIM, Ann Arbor, Michigan, pp. 1169–1178.Google Scholar
  13. Dethier B. E., 1974. Phenology satellite experiment. Final report, contract NAS5–21781, Cornell University, Ithaca, NY.Google Scholar
  14. Fung I., Prentice K., Matthews E., Learner J. & Russell G., 1983. Three-dimensional tracer model study of atmospheric CO2: Response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res. 88: 1281–1294.Google Scholar
  15. Gates D. M., Keegan H. J., Schleter J. C. & Weidner V. R., 1965. Spectral properties of plants. AP Optics 4: 11–20.Google Scholar
  16. Gatlin, J. A., Tucker, C. J. & Schneider, S. R., 1981. Use of NOAA-6 channels one and two for monitoring vegetation, In: IEEE Proc. Int. Geoscience and Remote Sensing Symp., Washington, DC, June 8–11.Google Scholar
  17. Gray T. L. & McCrary D. G., 1981. The environmental index, a tool potentially useful for arid land management. Agristars Rep. No. EW-N1–04076, NASA Johnson Space Center, Houston, Texas.Google Scholar
  18. Greegor D. H. & Norwine J., 1981. A gradient model of vegetation and climate utilizing NOAA satellite imagery, Phase I: Texas Transect. Agristars report no. FC-J1–04176, NASA Johnson Space Center, Houston, Texas.Google Scholar
  19. Hansen J., Johnson D., Lacis A., Lebedeff S., Lee P., Rind D. & Russell G., 1981. Climate impact of increasing atmospheric carbon dioxide. SCI 213: 957–966.Google Scholar
  20. Hatfield J. L., 1983. Remote sensing estimates of potential and actual crop yield. Remote Sensing Environ. 13: 301–311.Google Scholar
  21. Hesketh J. D. & Jones J. W. (eds.), 1980. Predicting photosynthesis for ecosystem models. CRC Press, Baca Raton, Florida, 2 vols., 605 pp.Google Scholar
  22. Holben B. N. & Fraser R. S., 1984. Red and near-infrared sensor response to off-nadir viewing. Int. J. Remote Sensing 5: 145–160.Google Scholar
  23. Holben B. N., Tucker C. J. & Fan C. J., 1980. Assessing soybean leaf area and leaf biomass with spectral data. Photogr. E. R. 46: 651–656.Google Scholar
  24. Holdridge L. R., 1947. Determination of world plant formations from simple climatic data. SCI 105: 367–368.Google Scholar
  25. Idso S. B. & deWit C. T., 1970. Light relations in plant canopies. Appl. Opt. 9: 177–184.Google Scholar
  26. Jackson R. D., 1983. Spectral indices in n-space. Remote Sensing Environ. 13: 409–421.Google Scholar
  27. Junge C. E. & Czeplak G., 1968. Some aspects of seasonal variation of carbon dioxide and ozone. Tellus 20: 422–434.Google Scholar
  28. Justice, C. O., 1983. Contribution of remote sensing to the inventory and monitoring of natural resources. In: Proceedings, Renewable Resource Inventories for Monitoring Changes and Trends, Corvallis, Oregon, August 15–19: 362–366.Google Scholar
  29. Justice, C. O., Townshend, J. R. G., Holben, B. N. & Tucker, C. J., 1985. Phenology of global vegetation using meteorological satellite data. Intern. J. Remote Sensing (in press).Google Scholar
  30. Kauth, R. J. & Thomas, G. S., 1976. The tasseled cap — a graphic description of the spectral-temporal development of agricultural crops as seen by landsat. Proceedings Symp. Machine Processing of Remotely Sensed Data. West Lafayette, Indiana.Google Scholar
  31. Kidwell K. A., 1979. NOAA polar orbiter users guide. Dept. of Commerce, Washington, D.C.Google Scholar
  32. Knipling E. B., 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation by vegetation. Remote Sensing Environ 1: 115–119.Google Scholar
  33. Krinov E. L., 1947. Spectral reflectance of natural formations. Akad. Nauk, USSR, Laboratorica Aerometodov, Moscow (Transl. by NEC of Canada, T1439, G. Belkov).Google Scholar
  34. Küchler, A. W., 1964. Potential natural vegetation of the Conterminous United States. Amer. Geographical Soc. Spec. Pub. 36, New York.Google Scholar
  35. Kumar M. & Monteith J. L., 1981. Remote sensing of crop growth, In: H. Smith (ed.), Plants and the daylight spectrum, pp. 134–144, Academic Press, London.Google Scholar
  36. Lemeur R. & Blad B. L., 1974. A critical review of light models for estimating the shortwave radiation regime of plant canopies. Agri. Meteorol. 14: 255–286.Google Scholar
  37. Lieth H., (ed.), 1974. Phenology and seasonality modeling, ecological studies 8. Springer-Verlag, New York.Google Scholar
  38. Lieth H., (ed.), 1978. Pattern of primary productivity in the biosphere. Benchmark Papers in Ecology, Vol. 8. Dowden, Hutchinson & Ross, Stroudsberg, PA.Google Scholar
  39. Matthews E., 1983. Global vegetation and land use; new high-resolution data bases for climate studies. J. Climate and Appl. Meteor. 22: 474–487.Google Scholar
  40. Mather J. R. & G. A. Yoshioka, 1968. The role of climate in distribution of vegetation. Assn Am. Geog. Ann. 58 (1): 29–41.Google Scholar
  41. Monteith J. L., 1977. Climate and the efficiency of crop production in Britain. Phil. Trans R. Soc. Lond. B 291: 277–294.Google Scholar
  42. NASA/GSFC, 1982. Project plant for fundamental research in scene radiation and atmospheric effects characterization. NASA/Goddard Space Flight Center, Greenbelt, Maryland, 128 pp.Google Scholar
  43. NASA/HQ, 1983. Land-related global habitability science issues. NASA Headquarters, Washington, DC, 112 pp.Google Scholar
  44. NASA/JSC, 1979. The LACIE Symposium, Proceedings of technical sessions. Vols. I and II, NASA Johnson Space Center, Houston, Texas, 1125 pp.Google Scholar
  45. National Oceanic and Atmospheric Administration, 1982. Monthly climatic data for the world, sponsored by World Meteorological Organization. Vol. 35, National Oceanic and Atmospheric Administration, National Climatic Center, Asheville, North Carolina. 172 pp.Google Scholar
  46. Norwine J. & Greegor D. H., 1983. Vegetation classification based on AVHRR satellite imagery. Remote Sensing Environ. 13: 69–87.Google Scholar
  47. Odum E. P., 1971. Fundamentals of ecology. 3rd ed., W. B. Saunders, Philadelphia, 525 pp.Google Scholar
  48. Olson, J. & Watts, J. A., 1982. Major world ecosystem complexes (map scale 1:30 m), included in W. C. Clark, (ed.), Carbon dioxide review 1982, Oxford University Press.Google Scholar
  49. Ormsby J. P., 1982. Classification of simulated and actual NOAA-6 AVHRR data for hydrologic land-surface feature definition, Geoscience and Remote sensing, GE 20: 262–267.Google Scholar
  50. PerryJr. C. R. & Lanternschlager L. F., 1984. Functional equivalence of spectral vegetation indices. Remote Sensing Environ. 14: 169–182.Google Scholar
  51. Richardson A. J. & Wiegand C. L., 1977. Distinguishing vegetation from soil background information. Photogr. E. R. 43: 1541–1552.Google Scholar
  52. Rodin L. E., Bazilevich N. I. & Razov N. N., 1975. Productivity of the world's main ecosystems. In: D. E. Reichle, J. F. Franklin & D. W. Goodall (eds.), Productivity of the world's main ecosystems. National Academy of Sciences, Washington, DC.Google Scholar
  53. Rouse J. W., Haas R. H., Deering D. W. & Schell J. A., 1974. Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation. Final Rep. RSC 1978–4, Remote Sensing Center, Texas A&M Univ., College Station.Google Scholar
  54. Schneider, S. & McGinnis, Jr., D., 1977. Spectral differences between VHRR and VISSR data and their impact of environmental studies. In: Proceedings Amer. Soc. Photogrammetry, 43 Meeting 27 February to 5 March 1977. Washington, DC.Google Scholar
  55. Sharpe D. M., 1975. Methods for assessing the primary productivity of regions, In: H. Lieth & R. H. Whittaker (eds.), Primary productivity of the biosphere, pp. 147–166, Springer-Verlag, New York.Google Scholar
  56. Shelford V. E., 1963. The ecology of North America. University of Illinois Press, Chicago, 722 pp.Google Scholar
  57. Shay R., (ed.), 1969. Remote sensing with special reference to agriculture and forestry. National Academy of Sciences, Washington, DC, 527 pp.Google Scholar
  58. Shukla J. & Mintz Y., 1982. Influence of land-surface evapotranspiration on the earth's climate. SCI 215: 1498–1501.Google Scholar
  59. Steven M. D., Biscoe P. V. & Jaggard K. W., 1983. Estimation of sugar beet productivity from reflection in red and near infrared spectral bands. Intern. J. Remote Sensing 4: 325–334.Google Scholar
  60. Suits G. H., 1972. The calculation of the directional reflectance of a vegetative canopy. Remote Sensing Environ. 2: 117–125.Google Scholar
  61. Tarpley J. D., Schneider S. R. & Morey R. L., 1983. Global vegetation indices from NOAA-7 meteorological satellite. J. Climate and Ap. Meteor. 23: 491–493.Google Scholar
  62. Thomas W. L.Jr., (ed.), 1959. Man's role in changing the face of the earth. The University of Chicago Press, Chicago, 817 pp.Google Scholar
  63. Thompson D. R. & Wehmanen O. A., 1979. Using Landsat digital data to detect moisture stress, Photogr. E. R. 45: 201–207.Google Scholar
  64. Townshend J. R. G. & Tucker C. J., 1981. Utility of AVHRR of NOAA-6 and-7 for vegetation mapping. In: Matching remote sensing technologies and applications proceedings, pp. 97–107, Remote Sensing Soc., London.Google Scholar
  65. Tucker C. J., 1978. A comparison of satellite sensors for monitoring vegetation. Photogr. E. R. 44: 1369–1380.Google Scholar
  66. Tucker C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing Environ. 8: 127–150.Google Scholar
  67. Tucker C. J., Holben B. N., ElginJr. J. H. & McMurtrey J. E., 1981. Remote sensing of total dry-matter accumulation in winter wheat. Remote sensing Environ. 11: 171–189.Google Scholar
  68. Tucker, C. J., Gatlin, J. A., Schneider, S. R. & Kuchinos, M. A., 1982. Measuring vegetation in the Nile delta with NOAA-6 and NOAA-7 AVHRR data, In: Proceedings Intern. Symp. Remote Sensing of Arid and Semiarid Lands, Environmental Research Instituto of Michigan, Cairo.Google Scholar
  69. Tucker C. J., Vanpraet C., Boerwinkle E. & Gaston A., 1984. Satellite remote sensing of total dry matter accumulation in the Senegalese Sahel. Remote Sensing Environ. 13: 461–474.Google Scholar
  70. Tucker C. J., Hielkema J. U. & Roffey J., 1985a. Satellite remote sensing of ecological conditions for desert locust survey and forecasting. Intern. J. Remote Sensing 6: 122–138.Google Scholar
  71. Tucker C. J., Townshend J. R. G. & Goff T. E., 1985b. Continental land cover classification using NOAA-7 AVHRR data. SCI 227: 369–375.Google Scholar
  72. Tucker C. J., Vanpraet C., Sharman M. I. & Van Ittersum G., 1985c. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sensing Environ. 14: 233–249.Google Scholar
  73. Waring R. H. & Franklin J. F., 1979. Evergreen coniferous forests of the Pacific Northwest. SCI 204: 1380–1386.Google Scholar
  74. Weinman J. A. & Guetter P. J., 1972. Penetration of solar irradiance through the atmosphere and plant canopies. J. Appl. Meteorol. 11: 136–140.Google Scholar
  75. Whittaker R. H., 1970. Communities and ecosystems. Macmillan, London, 162 pp.Google Scholar
  76. Whittaker R. H. & Likens G. E., 1975. Primary production: The biosphere and man, In: H. Lieth & R. H. Whittaker (eds.), Primary productivity of the biosphere. Ecological Studies, 14, Springer Verlag, New York.Google Scholar
  77. Woodwell G. M., Whittaker T. H., Reiners W. A., Likens G. E., Delwiche C. C. & Botkin D. B., 1978. The biota and the world carbon budget. SCI 199: 141–146.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • Samuel N. Goward
    • 1
  • Compton J. Tucker
    • 2
  • Dennis G. Dye
    • 1
  1. 1.Department of GeographyUniversity of MarylandCollege ParkUSA
  2. 2.Earth Resources BranchNASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations