Photosynthesis Research

, Volume 24, Issue 1, pp 47–53

A reverse KREBS cycle in photosynthesis: consensus at last

  • Bob B. Buchanan
  • Daniel I. Arnon
Minireview

Key words

CO2 assimilation photosynthetic bacteria ferredoxin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison M.J. and Peel J.L. (1971) The biosynthesis of valine from isobutyrate by Peptostreptococcus elsdenii and Bacteroides ruminicola. Biochem. J. 121, 431–437PubMedGoogle Scholar
  2. Allison M.J. and Robinson I.M. (1967) Biosynthesis of phenylalanine from phenylacetate by Chromatium and Rhodospirillum rubrum. J. Bacteriol. 93, 1269–1275PubMedGoogle Scholar
  3. Antranikian G., Herzberg C. and Gottschalk G. (1982) Characterization of citrate lyase from Chlorobium limicola. J. Bacteriol. 152, 1284–1287PubMedGoogle Scholar
  4. Arnon D.I. (1988) The discovery of ferredoxin: the photosynthetic path. Trends Biochem. Sci. 13, 30–33; correction, 143CrossRefPubMedGoogle Scholar
  5. Arnon D.I., Losada M., Nozaki M. and Tagawa K. (1961) Photoproduction of hydrogen, photofixation of nitrogen and a unified concept of photosynthesis. Nature 190, 601–606PubMedGoogle Scholar
  6. Bachofen R., Buchanan B.B. and Arnon D.I. (1964) Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. Proc. Natl. Acad. Sci. USA 51, 690–694PubMedGoogle Scholar
  7. Beuscher N. and Gottschalk G. (1972) Lack of citrate lyase — the key enzyme of the reductive carboxylic acid cycle in Chlorobium thiosulfatophilum and Rhodospirilum rubrum. Z. Naturforsch 27b, 967–973Google Scholar
  8. Bondar V.A., Gogotova G.I. and Ziakum A.M. (1976) Fractionation of carbon isotopes by photoautotrophic microorganisms having different pathways of carbon dioxide assimilation. Dokl. Akad. Nauk SSSR (Biological Sciences) 228, 720–722 (English translation, pp. 223–225)Google Scholar
  9. Bothe H., Falkenberg B. and Molteernsting U. (1974) Properties and function of the pyruvate: ferredoxin oxidoreductase from the blue-green alga Anabaena cylindrica. Arch. Mikrobiol. 96, 291–304.PubMedGoogle Scholar
  10. Broda, E. (1975) The Evolution of Bioenergetic Processes, Pergamon PressGoogle Scholar
  11. Buchanan B.B. (1969) Role of ferredoxin in the synthesis of α-ketobutyrate from propionyl coenzyme A and carbon dioxide by enzymes from photosynthetic and nonphotosynthetic bacteria. J. Biol. Chem. 244, 4218–4223PubMedGoogle Scholar
  12. Buchanan B.B. (1974) Orthophosphate requirement for the formation of phosphoenolpyruvate from pyruvate by enzyme preparations from photosynthetic bacteria. J. Bacteriol. 199, 1066–1068Google Scholar
  13. Buchanan B.B. and Arnon D.I. (1970) Ferredoxins: Chemistry and function in photosynthesis, nitrogen fixation and fermentative metabolism. Adv. Enzymol. 33, 119–176PubMedGoogle Scholar
  14. Buchanan B.B., Bachofen R. and Arnon D.I. (1964) Role of ferredoxin in the reductive assimilation of CO2 and acetate by extracts of the photosynthetic bacterium, Chromatium. Proc. Natl. Acad. Sci. USA 52, 839–847PubMedGoogle Scholar
  15. Buchanan B.B. and Evans M.C.W. (1965) The synthesis of α-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 54, 1212–1218PubMedGoogle Scholar
  16. Buchanan B.B., Evans M.C.W. and Arnon D.I. (1967) Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum. Arch. Microbiol. 59, 32–40Google Scholar
  17. Buchanan B.B., Matsubara H. and Evans M.C.W. (1969) Ferredoxin from the photosynthetic bacterium, Chlorobium thiosulfatophilum. A link to ferredoxins from nonphotosynthetic bacteria. Biochim. Biophys. Acta 189, 46–53PubMedGoogle Scholar
  18. Buchanan B.B., Schurmann P. and Shanmugam K.T. (1972) Role of reductive carboxylic acid cycle in a photosynthetic bacterium lacking ribulose-1,5 diphosphate carboxylase. Biochim. Biophys. Acta 283, 136–145PubMedGoogle Scholar
  19. Buchanan B.B. and Sirevåg R. (1976) Ribulose 1,5-bisphosphate and Chlorobium thiosulfatophilum. Arch. Microbiol. 109, 15–19PubMedGoogle Scholar
  20. Bush R.S. and Sauer F.D. (1976) Enzymes of 2-Oxo acid degradation and biosynthesis in cell-free extracts of mixed rumen micro-organisms. Biochem. J. 157, 325–331PubMedGoogle Scholar
  21. Calvin M. (1962) The path of carbon in photosynthesis. Science 135, 879–889PubMedGoogle Scholar
  22. Cherniadjev I.I., Kondratieva E.N., and Doman N.G. (1974) The activity of ribulose diphosphate- and phosphopyruvate carboxylases in phototrophic bacteria. Mikrobiologiya 43, 949–954.Google Scholar
  23. Evans M.C.W. and Buchanan B.B. (1965) Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 53, 1420–1425PubMedGoogle Scholar
  24. Evans M.C.W., Buchanan B.B. and Arnon D.I. (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 55, 928–934PubMedGoogle Scholar
  25. Fuchs, G. and Stupperich, E. (1985) Evolution of autotrophic CO2 fixation. In Evolution of Prokaryotes, eds. Schleifer, K.H. and Stackebrandt, E., pp. 235–251, Academic PressGoogle Scholar
  26. Fuchs G.E., Stupperich and G. Eden (1980) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of the reductive tricarboxylic acid cycle in growing cells. Arch. Microbiol. 128, 64–71Google Scholar
  27. Fuchs G.E., Stupperich E. and Jaenchen R. (1980b) Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch. Microbiol. 128, 56–63Google Scholar
  28. Fuller, R.C. (1978) Photosynthetic carbon metabolism in the green and purple bacteria. In Photosynthetic Bacteria (R.K. Clayton and W.R. Sistrom, eds.), pp. 691–705, Plenum PressGoogle Scholar
  29. Gehring U. and Arnon D.I. (1971) Ferredoxin-dependent phenylpyruvate synthesis by cell-free preparations of photosynthetic bacteria. J. Biol. Chem. 246, 4518–4522PubMedGoogle Scholar
  30. Gehring Y. and Arnon D.I. (1972) Purification and properties of α-ketoglutarate synthase from a photosynthetic bacterium. J. Biol. Chem. 247, 6963–6969PubMedGoogle Scholar
  31. Gest H. (1987) Evolutionary roots of the citric acid cycle in prokaryotes. In Krebs Citric Acid Cycle—Half a Century and Still Running, eds. Kay J. and Weitzman P.D.J., pp. 3–16, University Press, CambridgeGoogle Scholar
  32. Gottschalk, G. (1985) Bacterial Metabolism (2nd edition) Springer-VerlagGoogle Scholar
  33. Ivanovsky R.N., Sintsov N.V. and Kondratieva E.M. (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch. Microbiol. 128, 239–241CrossRefGoogle Scholar
  34. Jungermann K., Kirchniway H. and Thauer R.K. (1970) Ferredoxin dependent CO2 reduction to formate in Clostridium pasteuranium. Biochem. Biophys. Res. Commun. 41, 682–689PubMedGoogle Scholar
  35. Krebs, H. (1981) The evolution of metabolic pathways. In Molecular and Cellular Aspects of Microbiol Evolution, (Carlisle, M.J., Collins, J.F. and Moseley, B.E.B. eds.) pp. 215–228 Cambridge University PressGoogle Scholar
  36. McFadden B.A. (1973) Autotrophic CO2 assimilation and the evolution of ribulose 1,5-diphosphate carboxylase. Bacteriol. Rev. 37, 289–319PubMedGoogle Scholar
  37. McFadden, B.A. (1978) Assimilation of one-carbon compounds. In The Bacteria, v. VI (Gunsalus, J.C. ed.), pp. 219–304, Academic PressGoogle Scholar
  38. Mortenson L.E., Valentine R.C. and Carnahan J.E. (1962) An electron transport factor from Clostridium pasteurianum. Biochem. Biophys. Res. Commun. 7, 448–452PubMedGoogle Scholar
  39. Mortlock R.R. and Wolfe R.S. (1959) Reversal of pyruvate oxidation in Clostridium butyrium. J. Biol. Chem. 234, 1657–1658PubMedGoogle Scholar
  40. Ormerod, J.G. and Sirevåg, R. (1983) Essential aspects of carbon metabolism. In The Phototrophic Bacteria (Ormerod, J.G., ed.), pp. 100–119, Blackwell Scientific PublicationsGoogle Scholar
  41. Preuss A., Schauder R., Fuchs G. and Stichler W. (1989) Carbon isotope fractionation by autotrophic bacteria with three different CO2 fixation pathways. Z. Naturforsch. 44c, 397–402Google Scholar
  42. Quandt L., Gottschalk G., Ziegler H. and Stichler W. (1977) Isotope discrimination by photosynthetic bacteria. FEMS Microbiol. Lett. 1, 125–128CrossRefGoogle Scholar
  43. Quandt L., Pfennig N. and Gottschalk G. (1978) Evidence for the key position of pyruvate synthase in the assimilation of CO2 or photosynthetic carbon metabolism by Chlorobium. FEMS Microbiol. Lett. 3, 227–230CrossRefGoogle Scholar
  44. Quayle J.R. and Ferenci T. (1978) Evolutionary aspects of autotrophy. Microbiol. Rev. 42, 251–273PubMedGoogle Scholar
  45. Schauder R., Widdel F. and Fuchs G. (1987) Carbon assimilation in sulfate reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch. Microbiol. 148, 218–225Google Scholar
  46. Shiveley J.M., Devore W., Stratford L., Porter L., Medlin L. and Stevens S.E.Jr. (1986) Molecular evolution of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisco). FEMS Microbiol. Lett. 37, 251–257CrossRefGoogle Scholar
  47. Strevåg R. (1974) Further studies on carbon dioxide fixation in Chlorobium. Archiv. Microbiol. 93, 3–18Google Scholar
  48. Sirevåg R., Buchanan B.B., Berry J.A. and Troughton J.H. (1977) Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112, 35–38PubMedGoogle Scholar
  49. Sirevåg R. and Ormerod J.G. (1970a) Carbon-dioxide fixation in photosynthetic green sulfur bacteria. Science 169, 186–188PubMedGoogle Scholar
  50. Sirevåg R. and Ormerod J.G. (1970b) Carbon dioxide fixation in green sulfur bacteria. Biochem. J. 120, 399–408PubMedGoogle Scholar
  51. Smillie R.M., Rigopoulos N. and Kelly H. (1962) Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic bacteria. Biochim. Biophys. Acta 56, 612–614CrossRefPubMedGoogle Scholar
  52. Tabita F.R. (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev. 52, 155–189PubMedGoogle Scholar
  53. Tabita R.F., McFadden B.A. and Pfennig N. (1974) D-Ribulose 1,5-bisphosphate carboxylase in Chlorobium thiosulfatophilum Tassajara. Biochim. Biophys. Acta 341, 187–194PubMedGoogle Scholar
  54. Tagawa K. and Arnon D.I. (1962) Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature 195, 537–543PubMedGoogle Scholar
  55. Takabe T. and Akazawa T. (1977) A comparative study of the effect of O2 on photosynthetic carbon metabolism by Chlorobium thiosulfatophilum and Chromatium vinosum. Plant and Cell Physiol. 18, 753–765Google Scholar
  56. Thauer R.K. (1988) Citric acid cycle, 50 years on. Modification and an alternate pathway in anaerobic bacteria. Eur. J. Biochem. 176, 497–508PubMedGoogle Scholar
  57. Uyeda K. and Rabinowitz J.C. (1971) Pyruvate-ferredoxin oxidoreductase III. Purification and properties of the enzyme. J. Biol. Chem. 246, 3111–3119PubMedGoogle Scholar
  58. Weitzman, P.D.J. (1985) Evolution in the citric acid cycle. In Evolution of Prokaryotes, eds, Schleiffer, K.H. and Stackebrandt, E., pp. 253–275.Google Scholar
  59. Wood H.G., Ragsdale S.W. and Pezacka E. (1986) The acetyl-CoA pathway: a newly disovered pathway of autotrophic growth. Trends Biochem. Sci. 11, 14–17.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Bob B. Buchanan
    • 1
  • Daniel I. Arnon
    • 1
  1. 1.Division of Molecular Plant BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations