Skip to main content
Log in

Coat protein-mediated protection to cucumber mosaic virus infections in cultivated tomato

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Cucumber mosaic virus (CMV) infections rank among the most devastating diseases in the commercial culture of tomato (Lycopersicon esculentum Mill.), for which suitable sources of natural resistance are not available. The concept of pathogen-derived resistance, however, offers an alternate approach to combat plant viral diseases by transformation of crops with nucleotide sequences derived from the viral genome. This report demonstrates the successful application of such a pathogen-derived resistance gene comprising the CMV coat protein (CP) gene, to generate protection to CMV infections in cultivated tomato. Transformation of an inbred tomato line with the CMV CP gene isolated from a subgroup I strain, engendered high levels of protection to various CMV strains, including a virulent strain causing lethal necrosis and a typical subgroup II strain. Moreover, when challenged by natural infection through aphid vectors in open field, levels of protection were largely maintained in hemizygous hybrids. In all, these results demonstrate that synthetic resistance genes based on the CMV CP gene make excellent sources of broad spectrum resistance to CMV infections for introgression into tomato breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, J.M., P., Palukaitis & M., Zaitlin, 1992. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc Natl Acad Sci USA 89: 8759–8763.

    Google Scholar 

  • Ausubel, F.M., R., Brent, R.E., Kingston, D.D., Moore, J.G., Seidman, J.A., Smith & K., Struhl. (Eds.), 1987. Current Protocols in Molecular Biology. Green Publishing Associates, Inc. and John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Beachy, R.N., S., Loesch-Fries & N.E., Tumer, 1992. Coatprotein mediated resistance against virus infection. Ann Rev Phytopathol 28: 451–474.

    Google Scholar 

  • Bevan, M., 1984. Binary Agrobacterium vectors for plant transformation. Nucl acids Res 12: 8711–8721.

    Google Scholar 

  • Clark, M.F. & A.N., Adams, 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34: 475–483.

    Google Scholar 

  • Cuozzo, M., K.M., O'Connell, W., Kaniewski, R.-X., Fang, N.H., Chua and N.E., Tumer, 1988. Viral protection in transgenic tobacco Plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technol 6: 549–557.

    Google Scholar 

  • Devergne, J.C. & L., Cardin, 1973. Contribution à l'étude du virus de la mosaïque de concombre (CMV). IV. Essai de classification de plusieurs isolats sur la base de leur structure antigénique. Annales de Phytopathologie 5: 409–430.

    Google Scholar 

  • Ditta, G., S., Stanfield, D., Corbin & D.R., Helinski, 1980. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 80: 7347–7351.

    Google Scholar 

  • Douine, L., J.B., Quiot, G., Marchoux & P., Archange, 1979. Recensement des espèces végétales sensibles au virus de la mosaïque du concombre. Etude bibliographique. Annales de Phytopathologie 11: 439–475.

    Google Scholar 

  • Fraser, R.S.S., 1990. The genetics of resistance to plant viruses. Ann Rev Phytopathol 28: 179–200.

    Google Scholar 

  • Gallie, D.R., D.E., Sleat, J.W., Watts, P.C., Turner & T.M.A., Wilson, 1987. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucl. Acids Res. 15: 3257–3273.

    Google Scholar 

  • Gielen, J.J.L., P., de, Haan, A.J., Kool, D., Peters, M.Q.J.M., van, Grinsven & R.W., Goldbach, 1991. Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus. Bio/Technol 9: 1363–1367.

    Google Scholar 

  • Gonsalves, D., P., Chee, R., Provvidenti, R., Seem & J.L., Slightom, 1992. Comparison of coat protein-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors. Bio/Technol 10: 1562–1570.

    Google Scholar 

  • Gonsalves, C., B., Xue, M., Yepes, M., Fuchs, K., Ling, S., Namba, P., Chee, J.L., Slightom & D., Gonsalves, 1994. Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections. J Amer Soc Hort Sci 119: 345–355.

    Google Scholar 

  • Hellwald, K.-H. & P., Palukaitis, 1994. Nucleotide sequence and infectivity of cucumber mosaic cucumovirus (strain K) RNA2 involved in breakage of replicase-mediated resistance in tobacco. J Gen Virol 75: 2121–2125.

    Google Scholar 

  • Jacquemond, M. & G.J.-M., Lauquin, 1988. The cDNA of cucumber mosaic virus-associated satellite RNA has in vivo biological properties. Biochem Biophys Res Comm 151: 388–395.

    Google Scholar 

  • Kaper, J.M. & H.E., Waterworth, 1977. Cucumber mosaic virus associated RNA 5: causal agent for tomato necrosis. Science 196: 429–431.

    Google Scholar 

  • Kaper, J.M. & H.E., Waterworth, 1981. Cucumoviruses. In: E., Kurstak (Ed.), Handbook of plant virus infections and comparative diagnosis, pp. 257–332. Elsevier, Amsterdam.

    Google Scholar 

  • Kaper, J.M., D., Gallitelli & M.E., Tousignant, 1990. Identification of a 334-ribonucleotide viral satellite as principal aetiological agent in a tomato necrosis epidemic. Res Virol 141: 81–95.

    Google Scholar 

  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Google Scholar 

  • Logemann, J., J., Schell & L., Willmitzer, 1987. Improved method for the isolation of RNA from plant tissues. Anal Biochem 163: 16–20.

    Google Scholar 

  • MacKenzie, D.J. & P.J., Ellis, 1992. Resistance to tomato spotted wilt virus infections in transgenic tobacco expressing the viral nucleocapsid gene. Mol Plant-Microbe Interact 5: 34–40.

    Google Scholar 

  • Nakajima, M., T., Hayakawa, I., Nakamura & M., Suzuki, 1993. Protection against cucumber mosaic virus (CMV) strains O and Y and chrysanthemum mild mottle virus in transgenic tobacco plants expressing CMV-O coat protein. J Gen Virol 74: 319–322.

    Google Scholar 

  • Namba, S., K., Ling, C., Gonsalves, D., Gonsalves & J.L., Slightom, 1991. Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains. Gene 107: 181–188.

    Google Scholar 

  • Ooms, G., P.J.J., Hooykaas, G., Molenaar & R.A., Schilperoort, 1981. Crown gall tumors of different morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene 14: 33–50.

    Google Scholar 

  • Owen, J., M., Shintaku, P., Aeschleman, S., Ben Tahar & P., Palukaitis, 1990. Nucleotide sequence and evolutionary relationships of cucumber mosaic virus (CMV) strains: CMV RNA 3, J Gen Virol 71: 2243–2249.

    Google Scholar 

  • Palukaitis, P., M.J., Roossinck, R.G., Dietzgen & R.I.B., Francki, 1992. Cucumber mosaic virus. Adv Virus Res 41: 281–348.

    Google Scholar 

  • Piazolla, P., J.R., Diaz-Ruiz & J.M., Kaper, 1979. Nucleic acid homologies of eighteen cucumber mosaic virus isolates determined by competition hybridization. J Gen Virol 45: 361–369.

    Google Scholar 

  • Powell Abel, P., R.S., Nelson, B., De, N., Hoffmann, S.G., Rogers, R.T., Fraley & R.N., Beachy, 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743.

    Google Scholar 

  • Quemada, H.D., D., Gonsalves & J.L., Slightom, 1991. Expression of coat protein gene from cucumber mosaic virus strain C in tobacco: protection against infections by CMV strains transmitted mechanically or by aphids. Phytopathol 81: 794–802.

    Google Scholar 

  • Shintaku, M.H., L., Zhang & P., Palukaitis, 1992. A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4: 751–757.

    Google Scholar 

  • Studier, F.W., A.H., Rosenberg, J.J., Dunn & J.W., Dubendorff, 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185: 60–89.

    Google Scholar 

  • Tomlinson, J.A., 1987. Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110: 661–681.

    Google Scholar 

  • Ultzen, T., J. Gielen, F. Venema, A. Westerbroek, P. de Haan, M.-L. Tan, A. Schram, M. van Grinsven & R. Goldbach, 1995. Resistance to tomato spotted wilt virus in transgenic tomato hybrids. Euphytica, in press.

  • van der, Vlugt, R.A.A., R.K., Ruiter & R., Goldbach, 1992. Evidence for sense RNA-mediated protection to PVYN in tobacco plants transformed with the viral coat protein cistron. Plant Mol Biol 20: 631–639.

    Google Scholar 

  • Yoshioka, K., K., Hanada, T., Harada,Y., Minobe & K., Oosawa, 1993. Virus resistance in transgenic melon plants that express the cucumber mosaic virus coat protein gene and in their progeny. Japan J Breed 43: 629–634.

    Google Scholar 

  • Zaitlin, M., J.M., Anderson, K.L., Perry, L., Zhang & P., Palukaitis, 1994. Specificity of replicase-mediated resistance to cucumber mosaic virus. Virology 201: 200–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gielen, J., Ultzen, T., Bontems, S. et al. Coat protein-mediated protection to cucumber mosaic virus infections in cultivated tomato. Euphytica 88, 139–149 (1996). https://doi.org/10.1007/BF00032445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00032445

Key words

Navigation