, Volume 89, Issue 2, pp 87–106

The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada

  • Dale H. Vitt
  • Wai-Lin Chee


The relationships between vegetation components, surface water chemistry and peat chemistry from 23 fens in boreal Alberta, Canada, substantiate important differences along the poor to rich fen gradient. Each of the three fen types have their own characteristic species. The extreme-rich fens are characterized by Calliergon trifarium, Drepanocladus revolvens, Scirpus hudsonianus, S. cespitosus, Scorpidium scorpioides, and Tofieldia glutinosa. Moderate-rich fens are characterized by Brachythecium mildeanum, Carex diandra, Drepanocladus vernicosus, D. aduncus, and D. polycarpus. Poor fens are characterized by Carex pauciflora, Drepanocladus exannulatus, Sphagnum angustifolium, S. jensenii, and S. majus. Moderate-rich fens have fewer species in common with poor fens than with extreme-rich fens, while species richness is highest in the moderate-rich fens and lowest in poor fens. Variation in vascular plant occurrence appears to be more associated with nutrient levels, while bryophytes are more affected by changes in acidity and mineral elements. Based on chemical criteria, the three fen types are clearly separated by surface water pH, calcium, magnesium, and conductivity, but are less clearly differentiated by the nitrogen and phosphorus components of the surface waters. Moderate-rich fens are chemically variable both temporally and spatially, whereas poor fens and extreme-rich fens are more stable ecosystems. Whereas components of alkalinity-acidity are the most important factors that distinguish the three fen types in western Canada, nutrient concentrations in the surface waters generally do not differ appreciably in the three fen types.


Biogeochemistry Mire classification Nitrogen Nutrients Peatlands Water Chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous. 1969. Atlas of Alberta. University of Alberta Press, Edmonton, AB, in association with University of Toronto Press, Toronto, ON.Google Scholar
  2. Anonymous. 1984. Climate of Alberta. Report for 1984. Environment Canada, Atmospheric Environment Service and the Alberta Goverment, Edmonton, AB.Google Scholar
  3. Chee, W.-L. 1988. The vegetation, water chemistry, and peat chemistry of fens in the Lesser Slave-Athabasca area, and their relationships to other peatland types in Alberta, Canada, M.S. Dissertation, University of Alberta, Edmonton, AB.Google Scholar
  4. Chee W.-L. & Vitt D. H. The vegetation, surface water chemistry and peat chemistry of moderate-rich fens in central Alberta, Canada. Wetlands 9: 227–262.Google Scholar
  5. Daubenmire, R. F. 1959. A canopy coverage method of vegetation analysis. Northwest Scientist, 33: 43–64.Google Scholar
  6. Daubenmire, R. F. 1968. Plant Communities: A Textbook of Plant Synecology. Harper and Rowe, New York, NY.Google Scholar
  7. D'Elia, C. F. 1976. Determination of total nitrogen in aqueous samples using persulfate digestion. Limnology and Oceanography 22: 760–764.Google Scholar
  8. Dirschl, H. J. 1972. Geological processes in the Saskatchewan River delta. Canadian Journal of Earth Sciences 9: 1529–1549.Google Scholar
  9. DuRietz, G. E. 1949. Huvudenheter och huvugranser i svensk myrvegetation. Svenska Botaniska Tidskrift 43: 274–309.Google Scholar
  10. Feniak, M. 1944. Athabasca-Barrhead map area, Alberta. Geological Survey of Canada paper 44–6.Google Scholar
  11. Fox, D. J. & Guire, K. E. 1976. Documentation for MIDAS (3rd edition). Publication of Statistical Research Laboratory, University of Michigan, Ann Arbor, MI.Google Scholar
  12. Gorham, E. 1956. The ionic composition of some bog and fen waters in the English Lake District. Journal of Ecology 44: 142–152.Google Scholar
  13. Hackbarth, D. A. & Nastasa, N. 1979. The hydrology of the Athabasca Oil Sands area, Alberta. Alberta Research Council Bulletin 38, Edmonton, AB.Google Scholar
  14. Hays, W. L. 1981. Statistics (3rd edition). Holt, Rinehart & Winston, New York, NY.Google Scholar
  15. Heikurainen, L. 1979. Peatland classification in Finland and its utilization for forestry. p. 135–146. In Proceedings of the International Symposium on Classification of Peats and Peatlands. Hyytiälä, Finland, September 17–21, 1979.Google Scholar
  16. Heikurainen, L. & Pakarinen, P. 1982. 3. Peatland classification. p. 14–24. In Peatlands and their utilization in Finland. Finnish Peatland Society, Finnish National Committee of the International Peat Society, Helsinki.Google Scholar
  17. Hemond, H. F. 1983. The nitrogen budget of Thoreau's Bog. Ecology 64: 99–109.Google Scholar
  18. Henoch, W. E. S. 1960. String bogs in the Arctic 400 miles north of the treeline. Geographical Journal CXXVI: 335–339.Google Scholar
  19. Hill, M. O. 1979a. TWINSPAN—a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Ecology and Systematics, Cornell University, Ithaca, NY.Google Scholar
  20. Hill, M. O. 1979b. DECORANA—a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics, Cornell University, Ithaca, NY.Google Scholar
  21. Horton, D. G., Vitt, D. H. & Slack, N. G. 1979. Habitats of circumboreal-subarctic Sphagna. I. A quantitative analysis and review of species in the Caribou Mountains, northern Alberta. Canadian Journal of Botany 57: 2283–2317.Google Scholar
  22. Jeglum, J. K. 1971. Plant indicators of pH and water levels in peatlands at Candle Lake, Saskatchewan. Canadian Journal of Botany 49: 1661–1676.Google Scholar
  23. Jeglum, J. K. 1972. Boreal forest wetlands near Candle Lake, central Saskatchewan. Musk-ox 11: 41–58.Google Scholar
  24. Jones, J. F. 1962. Reconnaissance ground water study: Swan Hills and adjacent areas, Alberta. Alberta Research Council Preliminary Report 62–65, Edmonton, AB.Google Scholar
  25. Karlin, E. F. & Bliss, L. C. 1984. Variation in substrate chemistry along microtopographical and water chemistry gradients in peatlands. Canadian Journal of Botany 62: 142–152.Google Scholar
  26. Kivinen, E. 1935. Über Electrolytgehalt und Reaktion der Moorwässer. Agreogeol. Julkaisuja (Bulletin of the Soil Division of the Central Agricultural Experiment Station of Finland) 38: 1–71. Helsinki, Finland.Google Scholar
  27. Malmer, N. 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany, 64: 375–383.Google Scholar
  28. Malmer, N. & Sjörs, H. 1955. Some determinants of elementary constituents in mire plants and peat. Botaniska Notiser 108: 46–80.Google Scholar
  29. Moore, P. D. 1984. The Classification of mires: An Introduction. p. 1–10. In P. D.Moore, (ed.), European Mires, Academic Press, London.Google Scholar
  30. Moore, P. D. & Bellamy, D. J. 1974. Peatlands. Springer-Verlag, New York.Google Scholar
  31. Nicholson, B. J. 1987. Peat paleoecology and peat chemistry at Mariana Lakes, Alberta. M.S. Dissertation, University of Alberta, Edmonton, AB.Google Scholar
  32. Nicholson, B. J. 1989. Peat chemistry of a continental mire complex in western Canada. Canadian Journal of Botany 67: 763–775.Google Scholar
  33. Olenin, A. S. (ed.) 1951. Klassifikatsiya vidov torfa i torfyanykh zalezhei. Glamoe Upravlenie Torfyanogo Fonda, Moscow, U.S.S.R.Google Scholar
  34. Ozoray, G. F. 1974. Hydrology of the Waterways-Winnifred Lake area, Alberta. Alberta Research Council Report 74–2, Edmonton, AB.Google Scholar
  35. Pollett, F. C. 1972. Classification of peatlands, Newfoundland. p. 101–120. In Proceedings of the 4th International Peat Congress, Helsinki, 1972, 1.Google Scholar
  36. Richardson, C. J., Tilton, D. L., Kadlec, J. A., Chomie, J. P. M. & Wentz, W. A. 1978. Nutrient dynamics of northern wetland ecosystems. p. 217–241. In R. E.Good, D. F.Whigham and R. L.Simpson (ed.), Freshwater Wetlands, Ecological Processes and Management Potential. Academic Press, London.Google Scholar
  37. Ritchie, J. C. 1957. The vegetation of northern Manitoba. II. A prisere of the Hudson Bay Lowlands. Ecology 38: 429–435.Google Scholar
  38. Rowe, J. S. 1972. Forest Regions of Canada. Department of Environment, Canadian Forestry Service Publication 1300, Ottawa, ON.Google Scholar
  39. Sims, R. A., Cowell, D. W. & Wickware, G. M. 1982. Classification of fens near southern james Bay, using vegetation physiognomy. Canadian Journal of Botany 60: 2608–2623.Google Scholar
  40. Sjörs, H. 1952. On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2 (1950): 241–258.Google Scholar
  41. Sjörs, H. 1959. Bogs and fens in the Hudson Bay Lowlands. Arctic 12: 1–19.Google Scholar
  42. Sjörs, H. 1961a. Forest and peatland at Hawley Lake, northern Ontario. National Museum of Canada Bulletin 171: 1–31.Google Scholar
  43. Sjörs, H. 1961b. Surface patterns in boreal peatlands. Endeavor 20: 217–224.Google Scholar
  44. Sjörs, H. 1963. Bogs and fens on the Attawapiskat River, northern Ontario. National Museum of Canada Bulletin 186, Contributions to Botany, 1960–1961, Ottawa, ON.Google Scholar
  45. Slack, N. G., Vitt, D. H. & Horton, D. G. 1980. Vegetation gradients of minerotrophically rich fens in western Alberta. Canadian Journal of Botany 58: 330–350.Google Scholar
  46. Stanek, W. & Jeglum, J. G. 1977. Comparisons of peatland types using macro-nutrient contents of peat. Vegetatio 33: 163–173.Google Scholar
  47. Strickland, J. D. M. & Parsons, T. R. 1968. A manual of seawater analysis, 2nd edition. Fisheries Research Board of Canada Bulletin No. 168, Ottawa, ON.Google Scholar
  48. Urban, N. R. & Eisenreich, S. J. 1988. Nitrogen cycling in a forested Minnesota bog. Canadian Journal of Botany 66: 435–449.Google Scholar
  49. Urban, N. R., Eisenreich, S. J. & Bayley, S. E. 1988. The relative importance of denitrification and nitrate assimilation in midcontinental bogs. Limnology and Oceanography 33: 1611–1617.Google Scholar
  50. Vitt, D. H. 1991. Production-decomposition dynamics of boreal mosses over climatic, topographic, and chemical gradients. Journal Linnaean Society, Botany (in press).Google Scholar
  51. Vitt, D. H., Achuff, P. & Andrus, R. E. 1975. The vegetation and chemical properties of patterned fens in the Swan Hills, north central Alberta. Canadian Journal of Botany 53: 2776–2795.Google Scholar
  52. Waughman, G. J. 1980. Chemical aspects of the ecology of some south German peatlands. Journal of Ecology 68: 1025–1046.Google Scholar
  53. Waughman, G. J. & Bellamy, D. J. 1980. Nitrogen fixation and the nitrogen balance in peatlands. Ecology 61: 1185–1198.Google Scholar
  54. Walter, H. & Lieth, H. 1960. Klimadiagram Weltatlas. Fischer, Jena, GDR.Google Scholar
  55. Weatherbrun, M. W. 1967. Phenohypochlorite reaction for determination of ammonia. Analytical Chemistry 39: 971.Google Scholar
  56. Wells, E. D. 1981. Peatlands of eastern Newfoundland: Distribution, morphology, vegetation and nutrient status. Canadian Journal of Botany 59: 1978–1997.Google Scholar
  57. Witting, M. 1949. Kalciumhalten i nagra nordsvenska myrvegetation. Svenska Botaniska Tidskrift 43: 2–3.Google Scholar
  58. Zoltai, S. C. & Johnson, J. D. 1985. Development of a treed bog island in a minerotrophic fen. Canadian Journal of Botany 63: 1076–1085.Google Scholar
  59. Zoltai, S. C. & Tarnocai, C. 1971. Properties of a wooded palsa in northern Manitoba. Arctic Alpine Research 3: 115–129.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Dale H. Vitt
    • 1
  • Wai-Lin Chee
    • 2
  1. 1.Department of BotanyThe University of AlbertaEdmontonCanada
  2. 2.TorontoCanada

Personalised recommendations