Hydrobiologia

, Volume 114, Issue 3, pp 161–175

Epilithic and epipelic diatoms in the Sandusky River, with emphasis on species diversity and water pollution

  • R. Jan Stevenson
Article
  • 311 Downloads

Abstract

Benthic diatom communities were collected seasonally from silty and rocky substrates to survey the water quality of the Sandusky River. Even though species composition was highly variable along the river, recurrent changes in relative abundance of specific diatom taxa and changes in overall community composition delineated areas where discharge of treated sewage affected water quality of the river. Changes in species diversity (Shannon formula), not decreases in diversity, marked the site where greatest pollution had occurred. Problems with using species diversity indices to indicate pollution tend to be related to predicting decreases in diversity in response to decreases in water quality. Evidence in the Sandusky River and the theories of diatom community dynamics suggest that species diversity can be greater in polluted areas than less polluted areas.

Keywords

diatoms natural substrates pollution sewage species diversity streams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald, R. E. M., 1972. Diversity in South African diatom associations and its relation to water quality. Water Res. (Great Britain) 6: 1229–1238.Google Scholar
  2. Auer, M. T. & R. P. Canale, 1982. Ecological studies and mathematical modeling on Cladophora in Lake Huron: 7. Model verification and system response. J. Great Lakes Res. 8: 134–143.Google Scholar
  3. Cairns, J., D. W. Albaugh, F. Busey & D. Chanay, 1968. The sequential comparison index, a simplified method for nonbiologists to estimate relative differences in biological diversity in stream pollution studies. J. Water Pollut. Control Fed. 40: 1607–1613.PubMedGoogle Scholar
  4. Collins, G. B. & R. G. Kalinsky, 1977. Studies on Ohio diatoms: I. Diatoms of the Scioto River Basin II. Referenced checklist of diatoms from Ohio exclusive of Lake Erie and the Ohio River. Bull. Ohio Biol. Surv. N. S. 5(3): 1–76.Google Scholar
  5. Dam, H. van, 1982. On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwigia Beiheft 73: 97–115.Google Scholar
  6. Descy, J. P., 1979. A new approach to water quality estimation using diatoms. Nova Hedwigia Beihift. 64: 305–323.Google Scholar
  7. Eloranta, P. & S. Kunnas, 1979. The growth and species communities of the attached algae in a river system in Central Finnland. Arch. Hydrobiol. 86: 27–44.Google Scholar
  8. Forsyth, J. L., 1976. The geological setting of the Sandusky River Basin. In D. Baker, W. Jackson & B. Prater (eds.), Proceedings: Sandusky River Symposium. International Reference Group on Great Lakes Pollution and Land Use Activities. International Joint Commission. U. S. Environmental Protection Agency, Chicago, IL: 13–60.Google Scholar
  9. Foster, P. L., 1982. Species associations and metal contents of algae from rivers polluted by heavy metals. Freshw. Biol. 12: 17–39.Google Scholar
  10. Godfrey, P. J., 1978. Diversity as a measure of benthic macroinvertebrate community response to water pollution. Hydrobiologia 57: 111–122.CrossRefGoogle Scholar
  11. Hoagland, K. D., 1983. Short-term standing crop and diversity of periphytic diatoms in a eutrophic reservoir. J. Phycol. 19: 30–38.Google Scholar
  12. Hufford, T. L. & G. B. Collins, 1976. Distribution patterns of diatoms in Cedar Run. Ohio J. Sci. 76: 172–184.Google Scholar
  13. Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64: 285–304.Google Scholar
  14. Marcus, M. D., 1980. Periphytic community response to chronic nutrient enrichment by a reservoir discharge. Ecology 61: 387–399.Google Scholar
  15. Margalef, R., 1956. Informacion y diversidad espifica en las cominudades de organismos. Invest. Pesquera 3: 99–106.Google Scholar
  16. Martin, G. L., 1976. Ohio EPA water quality studies in the Sandusky River Basin. In D. Baker, W. Jackson & B. Prater (eds.), Proceedings: Sandusky River Symposium. International Reference Group on Great Lakes Pollution and Land Use Activities. International Joint Commission. U. S. Environmental Protection Agency, Chicago, IL: 99–122.Google Scholar
  17. Neter, J. & W. Wasserman, 1974. Applied linear statistical models. Richard D. Irwin, Inc., Homewood, IL. 842 pp.Google Scholar
  18. Olive, J. H. & J. L. Price, 1977. Diatom assemblages of the Cuyahoga River, N. E. Ohio (USA). Hydrobiologia 57: 175–187.CrossRefGoogle Scholar
  19. Patrick, R., 1961. The study of the numbers and kinds of species found in rivers in eastern United States. Proc. Acad. Nat. Sci. Philadelphia 113: 215–258.Google Scholar
  20. Patrick, R., 1963. The structure of diatom communities under varying ecological conditions. Ann. New York Acad. Sci. 108: 353–358.Google Scholar
  21. Patrick, R., M. H. Hohn & J. H. Wallace. 1954. A new method for determining the pattern of the diatom flora. Not. Nat. No. 259. 12 pp.Google Scholar
  22. Patrick, R. & C. W. Reimer, 1966. The diatoms of the United States. Vol. 1. Acad. Nat. Sci. Philadelphia Monogr. No. 13. 688 pp.Google Scholar
  23. Pielou, E. C., 1977. Mathematical Ecology. John Wiley & Sons, Inc., N.Y. 385 pp.Google Scholar
  24. Squires, L. E., S. R. Rushforth & J. D. Brotherson, 1979. Algal response to thermal effluent: study of a power station on the Provo River, Utah, USA. Hydrobiologia 63: 17–32.CrossRefGoogle Scholar
  25. Stevenson, R. J., 1981. Microphytobenthos accumulation and current. Ph.D. Dissertation, The University of Michigan, Ann Arbor, MI. 172 pp.Google Scholar
  26. Stevenson, R. J., in press. How currents on different sides of substrates affect mechanisms of benthic algal accumulation. Int. Revue ges. Hydrobiol.Google Scholar
  27. Stevenson, R. J. & P. A. Pryfogle, 1976. A comparison of the winter diatom flora of the Sandusky River and Tymochtee Creek. In D. Baker, W. Jackson & B. Prater (eds.), Proceedings: Sandusky River Symposium. International Reference Group on Great Lakes Pollution and Land Use Activities. International Joint Commission. U. S. Environmental Protection Agency, Chicago, IL: 209–231.Google Scholar
  28. Stevenson, R. J. & E. F. Stoermer, 1982a. Abundance patterns of diatoms on Cladophora in Lake Huron with respect to a point source of wastewater treatment plant effluent. J. Great Lakes Res. 8: 184–195.Google Scholar
  29. Stevenson, R. J. & E. F. Stoermer, 1982b. Luxury consumption of phosphorus by five Cladophora epiphytes in Lake Huron. Trans. Am. Microsc. Soc. 101: 151–161.PubMedGoogle Scholar
  30. Tent, L., 1981. Der aufwuchs in Hamburger Hafen, strukture einer Biocoenose in einem Belastungszentrum des Elbe-Aestuars. Arch. Hydrobiol. Suppl. 61: 1–58.Google Scholar
  31. Theinemann, A., 1939. Grundzüge einer allgemeinen Ökologie. Arch. Hydrobiol. 35: 267–285.Google Scholar
  32. Wilhm, J. L. & T. C. Dorris, 1968. Biological parameters for water quality criteria. BioScience 18: 477–481.Google Scholar

Copyright information

© Dr W. Junk Publishers 1984

Authors and Affiliations

  • R. Jan Stevenson
    • 1
  1. 1.Department of Biological SciencesBowling Green State UniversityBowling GreenU.S.A.
  2. 2.Department of BiologyUniversity of LouisvilleLouisvilleU.S.A.

Personalised recommendations