, Volume 83, Issue 1–2, pp 49–69 | Cite as

A theory of the spatial and temporal dynamics of plant communities

  • Thomas Smith
  • Michael Huston


An individual-based model of plant competition for light that uses a definition of plant functional types based on adaptations for the simultaneous use of water and light can reproduce the fundamental spatial and temporal patterns of plant communities. This model shows that succession and zonation result from the same basic processes. Succession is interpreted as a temporal shift in species dominance, primarily in response to autogenic changes in light availability. Zonation is interpreted as a spatial shift in species dominance, primarily in response to the effect of allogenic changes in water availability on the dynamics of competition for light. Patterns of succession at different points along a moisture gradient can be used to examine changes in the ecological roles of various functional types, as well as to address questions of shifts in patterns of resource use through time.

Our model is based on the cost-benefit concept that plant adaptations for the simultaneous use of two or more resources are limited by physiological and life history constraints. Three general sets of adaptive constraints produce inverse correlations in the ability of plants to efficiently use (1) light at both high and low availability, (2) water at both high and low availability, and (3) both water and light at low availabilities.

The results of this type of individual-based model can be aggregated to examine phenomena at several levels of system organization (i.e., subdisciplines of ecology), including (1) plant growth responses over a range of environmental conditions, (2) population dynamics and size structure, (3) experimental and field observations on the distribution of species across environmental gradients, (4) studies of successional pattern, (5) plant physiognomy and community structure across environmental gradients, and (6) nutrient cycling.


Competition Individual-based model Plant functional type Resource gradient Succession Tradeoff Zonation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AberJ. D., BotkinD. B. & MelilloJ. M. 1979. Predicting the effects of different harvesting regimes on productivity and yield in northern hardwoods. Can. J. For. Res. 9: 10–14.Google Scholar
  2. AberJ. D., MelilloJ. M. & FedererC. A. 1982. Predicting the effects of rotation length, harvest intensity, and fertilization on fiber yield from northern hardwood forests in New England. For. Sci. 28: 31–45.Google Scholar
  3. AcocksJ. P. H. 1975. Veld types of South Africa. Mem. of the Bot. Surv. S. Africa. 40. Govt. Printer, Pretoria.Google Scholar
  4. AuclairA. N. & GoffF. G. 1971. Diversity relations in the upland forests of the western Great Lakes area. Am. Nat. 105: 499–528.Google Scholar
  5. AungL. H. 1974. Root-shoot relationships. In: CarsonE. W. (ed.), The plant root and its environment. pp. 29–61. University Press, Virginia.Google Scholar
  6. AustinM. P. 1982. Use of a relative physiological performance value in the prediction of performance in multispecies mixtures from monoculture performance. J. Ecol. 70: 559–570.Google Scholar
  7. AustinM. P. 1985. Continuum concept, ordination methods, and niche theory. Ann. Rev. Ecol. Syst. 16: 39–61.Google Scholar
  8. AustinM. P., 1987. Models for analysis of species' response to environmental gradients. Vegetatio 69: 33–45.Google Scholar
  9. AustinM. P. & AustinB. O. 1980. Behaviour of experimental plant communities along a nutrient gradient. J. Ecol. 68: 891–918.Google Scholar
  10. AustinM. P., GrovesR. H., FrescoL. F. M. & KayeP. E. 1985. Relative growth of six thistle species along a nutrient gradient with multispecies competition. J. Ecol. 73: 667–684.Google Scholar
  11. AustinM. P. & SmithT. M. 1989. A new model for the continuum concept. Vegetatio 83: 35–47.Google Scholar
  12. BazzazF. A. 1979. The physiological ecology of plant succession. Ann. Rev. Ecol. Syst. 10: 351–371.Google Scholar
  13. BazzazF. A. & PickettS. T. A. 1980. Physiological ecology of tropical succession: A comparative review. Ann. Rev. Ecol. and Syst. 11: 287–310.Google Scholar
  14. BazzazF. A., ChiarielloN. R., ColeyP. D. & PitelkaL. F. 1987. Allocating resources to reproduction and defense. BioScience 37: 58–67.Google Scholar
  15. BazzazF. A. & ReekieE. G. 1985. The meaning and measurement of reproductive effort in plants. In: WhiteJ. (ed.), Studies on plant demography: a festschrift for John L. Harper. pp. 373–387. Academic Press, London.Google Scholar
  16. BloomA. J., ChapinF. S. & MooneyH. A. 1985. Resource limitation in plants-an economic analysis. Ann. Rev. Ecol. Syst. 16: 363–392.Google Scholar
  17. BoardmanN. K. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28: 355–377.Google Scholar
  18. BormannF. H. & LikensG. E., 1979. Pattern and process in a forested ecosystem. Springer-Verlag, New-York.Google Scholar
  19. BotkinD. B., JanakJ. F. & WallisJ. R. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol. 60: 849–872.Google Scholar
  20. BoxE. O. 1981. Microclimate and plant form. Junk, The Hague.Google Scholar
  21. BradshawA. D., ChadwickM. J., JowettD. & SnaydonR. W. 1964. Experimental investigations into the mineral nutrition of several grass species. IV. Nitrogen level. J. Ecol. 52: 665–676.Google Scholar
  22. BrokawN. V. L. 1985a. Gap-phase regeneration in a tropical forest. Ecol. 66: 682–687.Google Scholar
  23. BrokawN. V. L. 1985b. Treefalls, regrowth, and community structure in tropical forests. In: PickettS. T. A. & WhiteP. S. (eds), The ecology of natural disturbance and patch dynamics. [?]pp. 101–108. Academic Press, New York.Google Scholar
  24. BrunW. A. & CooperR. L. 1967. Effects of light intensity and carbon dioxide concentration on photosynthetic rate of soybean. Crop. Sci. 7: 451–454.Google Scholar
  25. BryantJ. P., ChapinF. S. & KleinD. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368.Google Scholar
  26. BudowskiG. 1965. Distribution of tropical American trees in the light of successional process. Turrialba 15: 40–42.Google Scholar
  27. BudowskiG. 1970. The distinction between old secondary and climax species in tropical Central American lowland forests. Trop. Ecol. 11: 44–48.Google Scholar
  28. ChapinF. S. 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260.Google Scholar
  29. ChapinF. S., VitousekP. M. & VanCleveK. 1986. The nature of nutrient limitation in plant communities. Am. Nat. 127: 48–58.Google Scholar
  30. ChapinF. S., BloomA. J., FieldC. B. & WaringR. H. 1987. Plant responses to multiple environmental factors. BioScience 37: 49–57.Google Scholar
  31. ChazdonR. L. 1986. The costs of leaf support in understory palms: economy versus safety. Am. Nat. 127: 9–30.Google Scholar
  32. ChristensenN. L. & PeetR. K. 1984. Convergence during secondary forest succession. J. Ecol. 72: 25–36.Google Scholar
  33. ClementsF. E. 1916. Plant succession. Carnegie Inst. Washington Publ. 242: 1–512.Google Scholar
  34. ClementsF. E., WeaverJ. E. & HansonH. C. 1929. Plant Competition. Carnegie Inst. Washington Publ. 398: 1–340.Google Scholar
  35. ColeyP. D., BryantJ. P. & ChapinF. S. 1985. Resource availability and plant antiherbivore defense. Science 230: 895–899.Google Scholar
  36. ConnellJ. H. 1972. Community interactions on marine rocky intertidal shores. Ann. Rev. Ecol. Syst. 3: 169–192.Google Scholar
  37. CowanI. R. 1982. Regulation of water use in relation to carbon gain in higher plants. In: LangeO. L., NobelP. S., OsmondC. B. & ZieglerH. (eds) Physiological plant ecology II. Water relations and carbon assimilation. pp. 589–613. Springer-Verlag, Berlin.Google Scholar
  38. CowanI. R. 1986. Economics of carbon fixation in higher plants. In: GivnishT. J. (ed.), On the economy of plant form and function. pp. 133–170. Cambridge Univ. Press, Cambridge.Google Scholar
  39. DarwinC., 1859. The origin of species by means of natural selection or the preservation of favored races in the struggle for life. Murray, London.Google Scholar
  40. DaubenmireR. F. 1947. Plants and environment: a textbook of plant autecology. Wiley, New York.Google Scholar
  41. DeAngelisD. L. & WaterhouseJ. C. 1987. Equilibrium and nonequilibrium concepts in ecological models. Ecol. Monogr. 57: 1–21.Google Scholar
  42. DruryW. H. & NisbetI. T. C. 1973. Succession. J. Arnold Arbor. Harv. Univ. 54: 331–368.Google Scholar
  43. EhleringerJ. R. 1984. Intraspecific competitive effects on water relations, growth, and reproduction in Encelia farinosa. Oecologia 63: 153–158.Google Scholar
  44. EhleringerJ. R., PearcyR. W. & MooneyH. A. 1986. Recommendations of the workshop on the future development of plant physiological ecology. Bull. Ecol. Soc. Am. 67: 48–58.Google Scholar
  45. EllenbergH. 1953. Physiologisches und ökologisches Verhalten derselben Pflanzenarten. Berichte der Deutschen Botanischen Gesellschaft 65: 351–362.Google Scholar
  46. EllenbergH. 1954. Über einige Fortschritte der Kausalen Vegetationskunde. Vegetatio 5/6: 199–211.Google Scholar
  47. EllenbergH. 1978. Vegetation Mitteleuropas mit den Alpen in ökologischer sicht. Ulmer, Stuttgart.Google Scholar
  48. EvansJ. R. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum). Plant Physiol. 72: 297–302.Google Scholar
  49. FarquharG. D. & SharkeyT. D. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33: 317–345.Google Scholar
  50. FarquharG. D. & vonCaemmererS. 1982. Modelling of photosynthetic response to environmental conditions. In: LangeO. L., NobelP. S., OsmondC. B. & ZieglerH. (eds), Physiological plant ecology, encycl. plant physiol. (NS) Vol. 12B. pp. 549–587. Springer, Berlin.Google Scholar
  51. FieldC. & MooneyH. A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: GivinishT. J. (ed.) On the economy of plant form and function. pp. 25–56. Cambridge Univ. Press, Cambridge.Google Scholar
  52. FineganB. 1984. Forest succession. Nature 312: 109–114.Google Scholar
  53. FitterA. H. & HayR. K. M. 1981. Environmental physiology of plants. Academic Press, London.Google Scholar
  54. GatesC. T. 1968. Water deficits and growth of herbaceous plants. In: KozlowskiT. T. (ed), Water deficits and plant growth II. Plant water consumption and response. pp. 135–190. Academic Press, New York.Google Scholar
  55. GatesD. M. 1980. Biophysical ecology. Springer-Verlag, N.Y.Google Scholar
  56. GiffordR. M. & EvansL. T., 1981. Photosynthesis, carbon partitioning, and yield. Ann. Rev. Plant Physiol. 32: 485–509.Google Scholar
  57. GivnishT. J. 1978. On the adaptive significance of compound leaves, with particular reference to tropical trees. In: TomlinsonP. B. & ZimmermanM. H. (eds), Tropical trees as living systems. pp. 351–380. Cambridge Univ. Press, Cambridge.Google Scholar
  58. GivnishT. J. 1979. On the adaptive significance of leaf form. In: SolbrigO. T., JainS., JohnsonG. B. & RavenP. H. (eds), Topics in plant population biology. pp. 375–407. Columbia Univ. Press, New York.Google Scholar
  59. GivnishT. J. 1982. On the adaptive significance of leaf height in forest herbs. Am. Nat. 120: 353–381.Google Scholar
  60. GivnishT. J. 1986. On the economy of plant form and function. (ed.). Cambridge Univ. Press, Cambridge.Google Scholar
  61. GreensladeP. J. M. 1983. Adversity selection and the habitat templet. Am. Nat. 122: 352–365.Google Scholar
  62. GrimeJ. P. 1974. Vegetation classification by reference to strategy. Nature 250: 26–31.Google Scholar
  63. GrimeJ. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 1169–1194.Google Scholar
  64. GrimeJ. P. 1979. Plant strategies and vegetation processes. John Wiley, N.Y.Google Scholar
  65. GrimeJ. P. & JeffreyD. W. 1965. Seedling establishment in vertical gradients of sunlight. J. Ecol. 53: 621–642.Google Scholar
  66. HalléF. 1974. Architecture of trees in the rain forest of Morobe District, New Guinea. Biotropica 6: 43–50.Google Scholar
  67. HalléF. & OldemanR. A. A. 1975. Essay on the architecture and dynamics of growth of tropical tress. Penerbit University, Kuala Lumpur, Malaya.Google Scholar
  68. HanesT. L. 1971. Succession after fire in the chaparral of southern California. Ecol. Monogr. 41: 27–52.Google Scholar
  69. HartshornG. S. 1978. Tree falls and tropical forest dynamics. In: TomlinsonP. B. & ZimmermannM. H. (eds) Tropical trees as living systems. pp. 617–638. Cambridge Univ. Press, Cambridge.Google Scholar
  70. Heady, E. O., Pesek, J. T. & Brown, W. G. 1955. Crop response surfaces and economic optima in fertilizer use. Iowa State College Bull. 424. Ames, Iowa.Google Scholar
  71. HoldridgeL. R. 1967. Life zone ecology. Tropical Science Center, San Jose, Costa Rica.Google Scholar
  72. HuntR. & NichollsA. O. 1986. Stress and the coarse control of growth and root-shoot partitioning in herbaceous plants. Oikos 47: 149–158.Google Scholar
  73. HustonM. A. 1979. A general hypothesis of species diversity. Am. Nat. 113: 81–101.Google Scholar
  74. HustonM. A. 1985. Patterns of species diversity on coral reefs. Ann. Rev. Ecol. Syst. 16: 149–177.Google Scholar
  75. HustonM. A. & DeAngelisD. L. 1987. Size bimodality in monospecific populations: A critical review of potential mechanisms. Am. Nat. 129: 678–707.Google Scholar
  76. HustonM. A. & SmithT. M. 1987. Plant succession: Life history and competition. Am. Nat. 130: 168–198.Google Scholar
  77. HustonM. A., DeAngelisD. L. & PostW. M. 1988. New computer models unify ecological theory. BioScience 38: 682–691.Google Scholar
  78. KeeverC. 1950. Causes of succession on old fields of the Piedmont, North Carolina. Ecol. Monogr. 20: 229–250.Google Scholar
  79. KempW. M. & MitschW. J. 1979. Turbulence and phytoplankton diversity: a general model of the ‘paradox of plankton’. Ecol. Model. 7: 201–222.Google Scholar
  80. KochA. L. 1974. Coexistence resulting from alternation of density-independent and density-dependent growth. J. Theor. Biol. 44: 373–386.Google Scholar
  81. KozlowskiT. T. 1976. Water supply and leaf shedding. In: KozlowskiT. T. (ed.) Water deficits and plant growth IV. Soil water measurement, plant responses, and breeding for drought resistance. pp. 191–231. Academic Press, New York.Google Scholar
  82. KozowskiT. T. 1982. Water supply and tree growth. Part I. Water deficits. Commonwealth Forestry Abstracts 43: 57–95.Google Scholar
  83. KramerP. J. 1969. Plant and soil water relationships: a modern synthesis. McGraw-Hill, New York.Google Scholar
  84. KramerP. J. 1983. Water relations of plants. Academic Press, Inc., Orlando, Florida.Google Scholar
  85. KramerP. J. & KozlowskiT. T. 1979. Physiology of woody plants. Academic Press, New York.Google Scholar
  86. LarcherW. 1980. Physiological plant ecology. Springer-Verlag, Berlin.Google Scholar
  87. LeonJ. & TumpsonD. 1975. Competition between two species for two complementary or substitutible resources. J. Theor. Biol. 50: 185–201.Google Scholar
  88. LewontinR. C. & CohenD. 1969. On population growth in a randomly varying environment. Proc. Nat. Acad. Sci. (USA) 62: 1056–1060.Google Scholar
  89. LinderS., McDonaldJ. & LohammarT. 1981. Effects of nitrogen status and irradiance during cultivation on photosynthesis and respiration in birch seedlings. Energy Forest Project (EEP). Swed. Univ. Agric. Sci., Uppsala.Google Scholar
  90. LoachK. 1967. Shade tolerance in tree seedlings. I. Leaf photosynthesis and respiration in plants raised under artificial shade. New Phytol. 66: 607–621.Google Scholar
  91. LoachK. 1970. Shade tolerance in tree seedlings. II. Growth analysis of plants raised under artificial shade. New Phytol. 69: 273–286.Google Scholar
  92. MacArthurR. H. & WilsonE. O. 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  93. McGreeK. J. 1986. Whole-plant carbon balance during osmotic adjustment to drought and salinity stress. Aust. J. Plant Physiol. 13: 33–43.Google Scholar
  94. McGrawJ. B. & WulffR. D. 1983. The study of plant growth: A link between the physiological ecology and population biology of plants. J. Theor. Biol. 103: 21–28.Google Scholar
  95. McMurtrieR. & WolfL. 1983. Above- and below-ground growth of forest stands: a carbon budget model. Ann. Bot. 52: 437–448.Google Scholar
  96. MedinaE. 1971. Effect of nitrogen supply and light intensity during growth on the photosynthetic capacity and carboxydismutase activity of leaves of Atriplex patula ssp. hastata. Carnegie Inst. Washington Yeab. 70: 551–559.Google Scholar
  97. MitchellH. L. & ChandlerR. F. 1939. The nitrogen nutrition and growth of certain deciduous trees of northeastern United States. Black Rock Forest Bull. 11: 1–91.Google Scholar
  98. MonsiN. 1968. Mathematical models of plant communities. In: EckardtF. (ed.), Functioning of terrestrial ecosystems at the primary production level. pp. 131–149. UNESCO, Paris.Google Scholar
  99. MonsiN. & MurataY. 1970. Development of photosynthetic systems as influenced by distribution of matter. In: Prediction and measurement of photosynthetic productivity. pp. 115–129. Cent. Agr. Publ. Doc. Wageningen, The Netherlands.Google Scholar
  100. MooneyH. A. 1972. The carbon balance of plants. Ann. Rev. of Ecol. and Syst. 3: 315–346.Google Scholar
  101. MooneyH. A. & GulmonS. L. 1979. Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: SolbrigO. T., JainS., JohnsonG. B. & RavenP. H. (eds) Topics in plant population biology. pp. 316–337. Columbia Univ. Press, New York.Google Scholar
  102. MooneyH. A. & GulmonS. L. 1982. Constraints on leaf structure and function in reference to herbivory. BioScience 32: 198–206.Google Scholar
  103. Mueller-DomboisD. & EllenbergH. 1974. Aims and methods of vegetation ecology. Wiley, New York.Google Scholar
  104. Mueller-DomboisD. & SimsH. P. 1966. Response of three grasses to two soils and water-table depth gradient. Ecology 47: 644–648.Google Scholar
  105. NobleI. R. & SlatyerR. O. 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5–21.Google Scholar
  106. Noy-MeirI. 1973. Desert ecosystems: environment and producers. Ann. Rev. Ecol. and Syst. 4: 25–51.Google Scholar
  107. NutmanF. J. 1937. Studies in the physiology of Coffea arabica L. Photosynthesis of coffee leaves under natural conditions. Ann. Bot. N.S. 1: 353–367.Google Scholar
  108. OostingH. J. 1942. An ecological analysis of the plant communities of Piedmont, North Carolina. Am. Midl. Nat. 28: 1–126.Google Scholar
  109. OostingH. J. & KramerP. J. 1946. Water and light in relation to pine reproduction. Ecology 27: 47–53.Google Scholar
  110. OriansG. H. & SolbrigO. T. 1977. A cost-income model of leaves and roots with special reference to arid and semiarid areas. Am. Nat. 111: 677–690.Google Scholar
  111. OsmondC. B., AustinM. P., BerryJ. A., BillingsW. D., BoyerJ. S., DaceyJ. W. H. NobelP. S., SmithS. D. & WinnerW. E. 1987. Stress physiology and the distribution of plants. BioScience 37: 38–48.Google Scholar
  112. OsonubiO. & DaviesJ. W. 1980. The influence of water stress on the photosynthetic performance and stomatal behavior of tree seedlings subjected to variation in temperature and irradiance. Oecologia 45: 3–10.Google Scholar
  113. ParkhurstD. G. & LoucksO. L. 1972. Optimal leaf size in relation to environment. J. Ecol. 60: 505–537.Google Scholar
  114. ParsonsR. F. 1968a. The significance of growth rate comparisons for plant ecology. Am. Nat. 102: 295–297.Google Scholar
  115. ParsonsR. F. 1968b Ecological aspects of growth and mineral nutrition of three mallee species of Eucalyptus. Oecol. Plant. 3: 121–136.Google Scholar
  116. PastorJ. & PostW. M. 1985. Development of linked forest productivity-soil process model. ORNL/TM-9519. Oak Ridge National Lab., Oak Ridge, TN.Google Scholar
  117. PastorJ. & PostW. M. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochem. 2: 3–17.Google Scholar
  118. PastorJ. & PostW. M. 1988. Response of northern forests to CO2-induced climatic change: Dependence on soil water and nitrogen availabilities. Nature 334: 55–58.Google Scholar
  119. Paul, B. G. 1930. The applications of silviculture in controlling the specific gravity of wood. USDA Tech. Bull. 168.Google Scholar
  120. PeetR. K. & LoucksO. L. 1977. A gradient analysis of southern Wisconsin forests. Ecology 58: 485–499.Google Scholar
  121. PinedaF. D., NicolasJ. P., RuizM., PecoB. & BernaldezF. G. 1981a. Succession, diversité et amplitude de niche dans les pâturages du centre de la peninsule Ibérique. Vegetatio 46/47: 267–277.Google Scholar
  122. PinedaF. D., NicolasJ. P., RuizM., PecoB. & BernaldezF. G. 1981b. Ecological succession in oligotrophic pastures of central Spain. Vegetatio 44: 165–176.Google Scholar
  123. RaunkiaerC. 1934. The life-forms of plants and statistical plant geography. Oxford Univ. Press, Oxford.Google Scholar
  124. RootR. B. 1967. The niche exploitation pattern of the bluegrey gnatcatcher. Ecol. Monogr. 37: 317–350.Google Scholar
  125. RorisonI. 1968. The response to phosphorus of some ecologically distinct plant species: I. Growth rates and phosphorus absorption. New Phytol. 67: 913–923.Google Scholar
  126. RunkleJ. R. 1981. Gap regeneration in some old-growth forests of the eastern United States. Ecol. 62: 1041–1051.Google Scholar
  127. RunkleJ. R. 1982. Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecol. 63: 1533–1546.Google Scholar
  128. RunkleJ. R. & YetterT. C. 1987. Treefalls revisited: gap dynamics in the southern Appalachians. Ecol. 68: 417–424.Google Scholar
  129. SalisburyE. J. 1929. The biological equipment of species in relation to competition. J. Ecol. 17: 197–222.Google Scholar
  130. ShelfordV. E. 1951a. Fluctuation of non-forest animal populations in the upper Mississippi Basin. Ecol. Monogr. 21: 149–181.Google Scholar
  131. ShelfordV. E. 1951b. Fluctuation of forest animal populations in east central Illinois. Ecol. Monogr. 21: 183–214.Google Scholar
  132. SchulzeE. D. 1982. Plant life forms and their carbon, water, and nutrient relations. In: LangeO. L., NobelP. S., OsmondC. B. & ZieglerH. Water relations and carbon assimilation. pp. 616–676. Springer-Verlag, Berlin.Google Scholar
  133. SchulzeE. D. 1986. Whole-plant responses to drought. Aust. J. Plant Physiol. 13: 127–141.Google Scholar
  134. SchulzeE. D., RobichauxR. H., GraceJ., RundelP. W. & EhleringerJ. R. 1987. Plant water balance. BioScience 37: 30–37.Google Scholar
  135. ShugartH. H. 1984. A theory of forest dynamics. Springer-Verlag, N.Y.Google Scholar
  136. ShugartH. H. & WestD. C. 1977. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the Chestnut blight. J. Environm. Manage. 5: 161–179.Google Scholar
  137. ShugartH. H. & WestD. C. 1979. Size and pattern of simulated forest stands. For. Sci. 25: 120–122.Google Scholar
  138. SmithT. M. & GoodmanP. S. 1986. The role of competition on the structure and dynamics of Acacia savannas in southern Africa. J. Ecol. 74: 1031–1044.Google Scholar
  139. SmithT. M. & GoodmanP. S. 1987. Successional dynamics in a semi-arid savannah: Spatial and temporal relationship between Acacia nilotica and Euclea divinorum. J. Ecol. 75: 603–610.Google Scholar
  140. SouthwoodT. R. E. 1977. Habitat, the templet for ecological strategies. J. Anim. Ecol. 46: 337–365.Google Scholar
  141. StruikG. J. & BrayJ. R. 1970. Root-shoot ratios of native forest herbs and Zea mays at different soil moisture levels. Ecol. 51: 892–893.Google Scholar
  142. SwaineM. D. & WhitmoreT. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio 75: 81–86.Google Scholar
  143. TeskeyR. O. & ShresthaR. R. 1985. A relationship between carbon dioxide, photosynthetic efficiency, and shade tolerance. Physiol. Plant. 63: 126–132.Google Scholar
  144. TilmanD. 1980. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116: 362–393.Google Scholar
  145. TilmanD. 1982. Resource competition and community structure. Princeton Univ. Press, Princeton.Google Scholar
  146. TilmanD. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr. 57: 189–214.Google Scholar
  147. TilmanD. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton Univ. Press, Princeton.Google Scholar
  148. TolleyL. C. & StrainB. R. 1984. Effects of CO2 enrichment of growth of Liquidambar styraciflua and Pinus taeda seedlings under different irradiance levels. Can. J. For. Res. 14: 343–350.Google Scholar
  149. TolleyL. C. & StrainB. R. 1985. Effects of CO2 enrichment and water stress on gas exchange of Liquidambar styraciflua and Pinus taeda seedlings grown under different irradiance levels. Oecologia 65: 166–172.Google Scholar
  150. TurnerN. C. 1986. Adaptation to water deficits: a changing perspective. Aust. J. Plant Physiol. 13: 175–190.Google Scholar
  151. WalkerB. H., LudwigD., HollingC. S. & PetermanR. M. 1981. Stability of semi-arid savanna grazing systems. J. Ecol. 69: 473–498.Google Scholar
  152. WalterH. 1964. Die Vegetation der Erde. I. Die tropischen und subtropischen Zonen. Fisher-Verlag, Jena.Google Scholar
  153. WalterH. 1968. Die Vegetation der Erde in Okophysiologischer Betrachtung, Vol. 2. Die gemässigten und arktischen Zonen. Fischer, Jena.Google Scholar
  154. WalterH. 1971. Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh.Google Scholar
  155. WalterH. 1973. Vegetation of the earth in relation to the ecophysiological conditions. Springer-Verlag., N.Y.Google Scholar
  156. WebbL. J., TraceyJ. G. WilliamsW. T. & LanceG. N. 1970. Studies in the numerical analysis of complex rainforest communities. V. A. comparison of the properties of floristic and physiognomic-structural data. J. Ecol. 58: 203–232.Google Scholar
  157. WeisserP. J. & MarquesF. 1979. Gross vegetation changes in the dune areas between Richards Bay and Mfolozi River. Bothalia 12: 711–721.Google Scholar
  158. WernerP. A. & PlattW. J. 1976. Ecological relationships of co-occurring goldenrods (Solidago: Compositae). Am. Nat. 110: 959–971.Google Scholar
  159. WestD. C., ShugartH. H. & BotkinD. B. 1981. Forest succession concepts and applications (eds) Springer-Verlag, New York.Google Scholar
  160. WhiteF. 1968. Zambia. Acta Phytogeogr. Suecica 54: 208–215.Google Scholar
  161. WhittakerR. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.Google Scholar
  162. WhittakerR. H. 1975. Communities and ecosystems. MacMillan, N.Y.Google Scholar
  163. WithersJ. R. 1979. Studies on the status of unburnt Eucalyptus woodland at Ocean-Grove Victoria. IV. Effects of shading on seedling establishment. Aust. J. Bot. 27: 47–66.Google Scholar
  164. ZahnerR. 1970. Site quality and wood quality in upland hardwoods: theoretical considerations of wood density. In: YoungbergC. T. & DaveyC. B. (eds), Tree growth and forest soils. pp. 406–424. Oregon State Univ. Press, Corvallis, Oregon.Google Scholar
  165. ZedlerP. H. 1981. Vegetation change in chaparral and desert communities in San Diego County, California. In: WestD. C., ShugartH. H. & BotkinD. B. (eds), Forest succession. pp. 406–424. Springer-Verlag, N.Y.Google Scholar
  166. ZimmermanM. H. & BrownC. L. 1971. Trees, structure, and function. Springer-Verlag, N.Y.Google Scholar
  167. ZimmermannM. H. & MilburnJ. A. 1982. Transport and storage of water. In: LangeO. L., NobelP. S., OsmondC. B. & ZieglerH. (eds), Physiological plant ecology II. Water relations and carbon assimilation. pp. 135–151. Springer-Verlag, Berlin.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Thomas Smith
    • 1
    • 2
  • Michael Huston
    • 1
  1. 1.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of Environmental Biology, Research School of Biological ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations