, Volume 98, Issue 1, pp 1–12 | Cite as

Multivariate analysis of climatic patterns of the Meditrranean basin

  • S. Mazzoleni
  • A. Lo Porto
  • C. Blasi


Climatic data from 444 weather-recording stations in the Mediterranean basin are examined by cluster analysis and principal component analysis. The application of numerical clustering distinguished several groups of climatic stations clearly interpretable in geographic and climatic terms. The hierarchical structure of the dendrograms could be used to identify at different scales uniform climatic regions. The complementary application of principal component analysis produced an ordination of climatic types, which clearly showed the main trends of variation in the precipitation and temperature patterns.


Climate Mediterranean Cluster analysis Principal Component Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anon. 1962. Weather in the Mediterranean. Air Ministry, Meteorological Office, London.Google Scholar
  2. Bagnouls, F. & Gaussen, H. 1957. Les climats biologiques et leur classification. Annal. Geogr. 355: 193–220.Google Scholar
  3. Blasi, C., Mazzoleni, S. & Paura, B. 1990. Proposta per una regionalizzazione fitoclimatica della Campania, Italia meridionale. In: Atti II Coll. su ‘Probl. Def. Amb. Fis. Biol. Medit.’, Castro Marino, Lecce.Google Scholar
  4. Daget, P. 1977a. Le bioclimat méditerranéen: caractères généraux, modes de caractérisation. Vegetatio 34 (1): 1–20.Google Scholar
  5. Daget, P. 1977b. Le bioclimat méditerranéen: analyse des fromes climatiques par le système d'Emberger. Vegetatio 34: (2): 87–103.Google Scholar
  6. Daget, P. & David, P. 1987. Essai de comparaison de diverses approches climatiques de la Méditerraneité. Ecol. Medit. VIII: 33–48.Google Scholar
  7. Emberger, L. 1930. La végétation de la région méditérranéenne. Essai d'une classification des groupements végétaux. Revue de Botanique n. 503: 642–662; 504: 705–721Google Scholar
  8. Everitt, B. S. 1979. Unresolved problems in cluster analysis. Biometrics 35: 169–181.Google Scholar
  9. French, D. D. 1974. Classification of IBP Tundra Biome Sites Based on Climate and Soil Properties. In. Soil Organisms and Decomposition in Tundra, A. J. Holding et al. (eds.), pp. 3–25, Tundra Biome Steering Comm., Stockholm.Google Scholar
  10. French, D. D. 1981. Multivariate comparisons of IBP Tundra Biome site characteristics. In: Tundra Ecosystems: A comparative analysis. L. C. Bliss, J. B. Cragg, D. W. heal, J. J. Moore (eds.). Int. Biol. Prog. 25, pp. 47–75. Cambridge Univ. Press, Cambridge.Google Scholar
  11. Galliani, G. & Filippini, F.. 1985. Climatic clusters in a small area. J. Climatol. 5: 487–501.Google Scholar
  12. Gandullo, J. M. 1972. Ecologia de los Pinares Espanoles. III Pinus halepensis Mill. Ministerio de Agricultura, Madrid.Google Scholar
  13. Gaussen, H. 1956. Le XVIII congrès international de Géographie, Rio de Janeiro, Aôut 1956. Annal. Geogr. 353: 1–19.Google Scholar
  14. Gentilli, J. 1953. Critique de la méthode de Thornthwaite pour la classification des climats Ann. Geogr. LXII: 180–185.Google Scholar
  15. Giacobbe, A. 1949. Le basi concrete per una classificazione ecologica della vegetazione italiana. Arch. Bot. XXV-vol. IX: 65–177.Google Scholar
  16. Giacobbe, A. 1958. Ricerche ecologiche sull'aridita' nei paesi del Mediterraneo occidentale. Webbia 14 (1): 81–159.Google Scholar
  17. Giacobbe, A. 1959. Nouvelles recherches écologiques sur l'aridité dans les pays de la méditerranée occidentale. Nat. Monsp. 11: 7–28.Google Scholar
  18. Giacobbe, A. 1964. La misura del bioclima mediterraneo. Ann. Acc. Ital. Sc. Forest. X: 37–68.Google Scholar
  19. Giacobbe, A. 1978. Pioggia e mediterraneismo. Ann. Acc. Ital. Sc. Forest. 27: 3–10.Google Scholar
  20. Hubalek, Z. & Horakova, M. 1988. Evaluation of climatic similarity between areas in biogeography. J. Biogeogr. 15: 409–418.Google Scholar
  21. Lang, R. 1951. Versuch einer exacten Klassification der Boden in Klimatischer und geologischer Hinsicht. Int. Mitt. Bodenk. 5: 312–346.Google Scholar
  22. Komarkova, V. 1980. Classification and ordination in the indian peaks area, Colorado rocky mountains. Vegetatio 42: 149–163.Google Scholar
  23. Köppen, W. 1900. Versuch einer Klassification der Klimate. Geogr. Z. 6: 593–611, 657–679.Google Scholar
  24. Köppen, W. 1918. Klassification der Klimate nach Temperatur, Nieduschlag und Jahreslanf. Petermanns geogr. Mitt. 64: 193–203, 243–248.Google Scholar
  25. Köppen, W. 1936. Das geographische System der Klimate. In: W. Koppen & R. Geiger, Handbuch der Klimatologie, IC, Berlin.Google Scholar
  26. Major, J. 1963. A climatic index to vascular plant activity. Ecology 44 (3): 485–497.Google Scholar
  27. Martonne, E. de 1926a. L'indice d'aridité Bull. Ass. Geogr. fr. 9: 3–5.Google Scholar
  28. Martonne, E. de 1926b. Une nouvelle function climatologique: l'indice d'aridité. Metereologie 2: 449–458.Google Scholar
  29. Martonne, E. de 1941. Nouvelle carte mondiale de l'indice d'aridité.Google Scholar
  30. Martonne, E. de 1955. Traité de Géographie Physique. Armand Colin, 3rd ed., Paris.Google Scholar
  31. Mazzoleni, S., French, D. D. & Miles, J. (In press). A comparative study of classification and ordination methods on succesional data. Coenosis.Google Scholar
  32. Nahal, I. 1981. The mediterranean climate from a biological viewpoint. In: F. DiCastri, D. W. Goodall and R. L. Specht (eds) Mediterranean-Type shrublands, Ecosystems of the world 11, pp. 63–86. Elsevier, Amsterdam.Google Scholar
  33. Pignatti, S. 1984. The consequence of climate on the mediterranean vegetation. Ann. Bot. Rome XLII: 123–130.Google Scholar
  34. Rivas-Martinez, S. 1981. Les étages bioclimatiques de la végétation de la péninsule ibérique. Anal. Jard. Bot. Madrid 37 (2): 251–268.Google Scholar
  35. Rivas-Martinez, S. 1983. Nuevo indice de termicidad para la region mediterranea. In: Avances sobre la investigacion en bioclimatologia. pp. 377–380. VIII Reunion de Bioclimatologia, Zaragoza.Google Scholar
  36. Rivas-Martinez, S. 1987. Bioclimatologia. In: La vegetacion de Espana. M. Peinado Lorca & S. Rivas Martinez (eds.), pp. 35–45 Coll. Aula Abierta, Madrid.Google Scholar
  37. Rivas-Martinez, S. 1990. Bioclimatic Belts of West Europe (Relations between Bioclimate and Plant Ecosystems) Comm. Europ. Communities, Climat. Nat. Hazards Rev. Prog., Arles, France.Google Scholar
  38. Rosini, E., Menenti, M. & Trevisan, V. 1974. Concetti e metodi della mesoclimatologia per un contributo alla conoscenza ambientale. Inf. Bot. Ital. 6: 163–207.Google Scholar
  39. Thornthwaite, C. W. 1931a. The climates of North America according to a new classification. Geog. Rev. 21: 633–655.Google Scholar
  40. Thornthwaite, C. W. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38: 55–94.Google Scholar
  41. Tuhkanen, S. 1980. Climatic parameters and indices in plant geography. Acta Phytogeog. Suec. 67, Uppsala.Google Scholar
  42. Wallen, C. C., ed. 1977, Climates of central and southern Europe. World Survey of climatology Vol. 6: Elsevier, Amsterdam.Google Scholar
  43. Walter, H. 1955. Die Klima-Diagramme als Mittel zur Beurteilung der Klimaverhäntnisse fur ökologische, vegetationskundliche und landwirtschaftliche Zwecke. Ber. deut. bot. Ges. 68: 321–344.Google Scholar
  44. Walter, H. & Lieth, H. 1960. Klimadiagramm-Weltatlas. Gustav Fisher Verlag, Vienna.Google Scholar
  45. Woodward, F. I. & Williams, F. G. 1987. Climate and plant distribution at global and local scales. Vegetatio 69: 189–197.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • S. Mazzoleni
    • 1
  • A. Lo Porto
    • 2
  • C. Blasi
    • 3
  1. 1.Facolta' di AgrariaIstituto BotanicoPortici (NA)Italy
  2. 2.Istituto Metodologie Avanzate Analisi Ambientali. CNRPotenzaItaly
  3. 3.Dipartimento Biologia VegetaleUniversita' ‘La Sapienza’RomaItaly

Personalised recommendations