, Volume 172, Issue 1, pp 173–182 | Cite as

Photon dependence of inorganic nitrogen transport by phytoplankton in perennially ice-covered antarctic lakes

  • John C. Priscu
Lakes and ponds


15N was used to examine the influence of Photosynthetic Photon Flux Density (PPFD) on NO3 and NH4+ transport by phytoplankton in the shallow and deep-chlorophyll layers of Lakes Fryxell and Vanda, Antarctica. The response observed in Lake Vanda could be modelled with a four parameter equation previously used to model photosynthesis. Only the 9 m NH4+ transport experiments in Lake Fryxell could be modelled with this equation. Other experiments in Lake Fryxell showed either no response to PPFD or a linear increase with no saturation at the PPFD levels used. Distinct trends were observed in transport parameters both between depths and between nitrogen species. Overall, the parameters indicate that phytoplankton in these lakes possess nitrogen transport affinities similar to those reported for other aquatic systems.

Key words

Antarctic 15nitrogen transport photon dependence phytoplankton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cota, G., 1985. Photoadaptation of high Arctic ice algae. Nature 219: 222–224.Google Scholar
  2. Dugdale, R. C. & J. J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.Google Scholar
  3. Glibert, P. M., F. Lipschultz, J. J. McCarthy & M. A. Altabet, 1982. Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr. 27: 639–650.Google Scholar
  4. Goldman, C. R., 1964. Primary productivity studies in Antarctic Lakes. Primary Symp. S.C.A.R. Paris, 2–8 Sep. 1962. Hermann Ltd., England, 651 p.Google Scholar
  5. Lewis, W. M. & S. N. Levine, 1984. The light response of nitrogen fixation in Lake Valencia, Venezuela. Limnol. Oceanogr. 29: 894–900.Google Scholar
  6. MacIsaac, J. J. & R. C. Dugdale, 1972. Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea. Deep-Sea Res. 19: 209–232.Google Scholar
  7. MacIsaac, J. J., R. C. Dugdale & G. Slawyk, 1974. Nitrogen uptake in the northwest Africa upwelling area: results from Cinceca-Charcot II cruise. Tethys 6: 69–76.Google Scholar
  8. Miflin, B. J. & P. J. Lea, 1977. Amino acid metabolism. Ann. Rev. Plant Physiol. 28: 299–329.Google Scholar
  9. Neess, J. C., R. C. Dugdale, V. A. Dugdale & J. J. Goering, 1962. Nitrogen metabolism in lakes. I. Measurement of nitrogen fixation with 15N. Limnol. Oceanogr. 7: 163–169.Google Scholar
  10. Nelson, D. M. & H. L. Conway, 1979. Effects of the light regime on nutrient assimilation by phytoplankton in the Baja California and northwest Africa upwelling systems. J. Mar. Res. 37: 301–318.Google Scholar
  11. Palmisano, A. C., J. B. Soohoo & C. W. Sullivan, 1985. Photosynthesis-irradiance relationships in sea ice microalgae from McMurdo Sound. Antarctica. J. Phycol. 21: 341–346.Google Scholar
  12. Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblage of marine phytoplankton. J. Mar. Res. 38: 687–701.Google Scholar
  13. Priscu, J. C., 1984. A comparison of nitrogen and carbon metabolism in the shallow and deep-water phytoplankton populations of a subalpine lake: Response to photosynthetic photon flux density. J. Plankton Res. 6: 733–749.Google Scholar
  14. Priscu, J. C., L. R. Priscu, W. F. Vincent & C. Howard-Williams, 1987. Photosynthate distribution by microplankton in permanently ice-covered Antarctic desert lakes. Limnol. Oceanogr. 32: 260–270.Google Scholar
  15. Sakshaug, E. & O. Holm-Hansen, 1986. Photoadaptation in Antarctic phytoplankton: Variation in growth rate, chemical composition and P versus I curves. J. Plankton Res. 8: 459–473.Google Scholar
  16. Segel, I. H., 1976. Biochemical calculations, 2nd Ed. Wiley. 441 p.Google Scholar
  17. Slawyk, G., 1979. 13C and 15N uptake by phytoplankton in the Antarctic upwelling area: results from the Antipod I cruise in the Indian Ocean sector. Aust. J. mar. Freshwat. Res. 30: 431–448.Google Scholar
  18. Syrett, P. J., 1981. Nitrogen metabolism of microalgae, p. 182–210. Int: T. Platt (ed.) Physiological Basis of Phytoplankton Ecology. Can. Bull. Fish. aquat. Sci. 210: 346 p.Google Scholar
  19. Talling, J. F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133–149.Google Scholar
  20. Terry, K. L., 1982. Nitrate uptake and assimilation in Thalassiosira weissfloggi and Phaedoctylum tricornutum: Interactions with photosynthesis and with the uptake of other ions. Mar. Biol. 69: 21–30.Google Scholar
  21. Tilzer, M. M., B. von Bodungen & V. Smetacek, 1985. Light dependence of phytoplankton photosynthesis in the Antarctic Ocean; Implications for regulating productivity, In: W. R. Siegfried, P. R. Condy & R. M. Laws (eds.), Proceedings of the 4th SCAR Symposium on Antarctic Biology, Wilderness, Sept. 1983, Springer-Verlag, Berlin, pp. 60–69.Google Scholar
  22. Timperley, M. H. & J. C. Priscu, 1986. Nitrogen-15 analysis by optical emission spectrometry using an atomic absorption spectrometer. Analyst 3: 23–28.Google Scholar
  23. Vincent, W. F., 1981. Production strategies in Antarctic inland waters: Phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 62: 1215–1224.Google Scholar
  24. Vincent, W. F. & C. L. Vincent, 1982. Factors controlling phytoplankton production in Lake Vanda (77° S). Can. J. Fish aquat. Sci. 39: 1602–1609.Google Scholar
  25. Wetzel, R. G., 1975. Limnology. Saunders, 743 p.Google Scholar
  26. Whalen, S. C. & V. Alexander, 1984. Influence of temperature and light on rate of inorganic nitrogen transport by algae in an arctic lake. Can. J. Fish. aquat. Sci. 41: 1310–1318.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • John C. Priscu
    • 1
  1. 1.Department of BiologyMontana State, UniversityBozemanUSA

Personalised recommendations