Advertisement

Hydrobiologia

, Volume 172, Issue 1, pp 129–148 | Cite as

Geochemical processes in the Lake Fryxell Basin (Victoria Land, Antarctica)

  • William J. Green
  • Thomas J. Gardner
  • Timothy G. Ferdelman
  • Michael P. Angle
  • Lawrence C. Varner
  • Philip Nixon
Rivers and streams

Abstract

Major ion, nutrient, transition metal, and cadmium concentrations are presented for nine meltwater streams flowing into Lake Fryxell, a permanently stratified lake with an anoxic hypolimnion in Taylor Valley, Antarctica. For the major ions, stream compositions are considered in terms of dissolution of marine-derived salts and chemical weathering of local rocks. Although Lake Fryxell has undergone significant evaporative concentration, only calcite, of the simple salts, is predicted to precipitate. Geochemical budgets indicate, however, that large quantities of K, Mg, and SO4 have also been removed from the lake. Reverse weathering may be an important sink for K and Mg, although magnesium removal with calcium carbonate phases is also likely. Assuming constancy of composition over recent geologic time, all of the salts in the Fryxell water column could have been delivered under present flows in about three thousand years (chloride age).

Comparison of nutrient concentrations in these meltwater streams with other flowing waters in the world reveals that the Fryxell streams are strikingly deficient in NO3-N but not PO4-P. The apparent nitrogen deficiency in Lake Fryxell itself can be attributed to the low annual stream loadings of this nutrient.

Stream concentrations and loadings are also presented for Mn, Fe, Co, Ni, Cu, and Cd. ‘Dissolved’ metal concentrations correlate roughly with average crustal abundances, suggesting that chemical weathering is the major source for these elements. Vertical metal profiles within Lake Fryxell itself appear to be governed by the formation of insoluble sulfide phases, or, in the case of Mn, by MnHPO4. However, dissolved nickel levels in sulfide-bearing waters are much higher than can be explained in terms of metal-sulfide equilibria, and we suspect that significant organic complexing of this metal is occurring in the deeper waters.

Key words

anoxic basin Antarctic streams geochemical processes Lake Fryxell metal cycling nitrogen deficiency reverse weathering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angino, E. E., K. B. Armitage & J. C. Tash, 1962. Chemical stratification in Lake Fryxell, Victorialand, Antarctica. Science 138: 34–36.Google Scholar
  2. Ball, J. W., E. A. Jenne & D. H. Nordstrom, 1979. WATEQ2 — a computerized chemical model for trace and major element speciation and mineral equilibria in natural waters. In E. A. Jenne (ed.), Chemical modeling in aqueous systems. Am. Chem. Soc., Washington, DC: 815–836.Google Scholar
  3. Canfield, D. E. & W. J. Green, 1985. The cycling of nutrients in a closed-basin Antarctic lake: Lake Vanda. Biogeochemistry 1: 233–256.Google Scholar
  4. Chinn, T. J. H., 1981. Hydrology and climate in the Ross Sea area. J. Roy. Soc. New Zealand 11: 373–386.Google Scholar
  5. Claridge, G. G. C. & I. B. Campbell, 1977. The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Science 123: 377–384.Google Scholar
  6. Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Ocean. 14: 454–458.Google Scholar
  7. Danielson, L. G. & S. Westerlund, 1978. An improved metal extraction procedure for the determination of trace metals in seawater by atomic absorption spectrometry with electrothermal atomization. Anal. Chim. Acta 98: 47–57.Google Scholar
  8. Downes, M. T., Howard-Williams & W. F. Vincent, 1986. Sources of organic nitrogen, phosphorus, and carbon in Antarctic streams. Hydrobiologia 134: 215–225.Google Scholar
  9. Emerson, S., L. Jacobs & B. Tebo, 1983. The behavior of trace metals in marine anoxic waters: Solubilities at the oxygen-hydrogen sulfide interface. In C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton & E. D. Goldberg (eds.), Trace metals in seawater. Plenum, NY: 579–608.Google Scholar
  10. Eugster, H. P. & L. A. Hardie, 1978. Saline lakes. In A. Lerman (ed.), Lakes-chemistry, geology, physics. Springer-Verlag, NY: 237–293.Google Scholar
  11. Eugster, H. P. & B. F. Jones, 1979. Behavior of major solutes during closed-basin brine evolution. Am. J. Sci. 279: 609–931.Google Scholar
  12. Gibbs, R. J., 1970. Mechanisms controlling world water chemistry. Science 170: 1088–1090.Google Scholar
  13. Green, W. J. & D. E. Canfield, 1984. Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochim. Cosmochim. Acta 48: 2457–2467.Google Scholar
  14. Green, W. J., D. E. Canfield, G. F. Lee & R. A. Jones, 1986a. Mn, Fe, Cu, and Cd distributions and residence times in closed basin Lake Vanda (Wright Valley, Antarctica). Hydrobiologia 134: 237–248.Google Scholar
  15. Green, W. J., T. G. Ferdelman, T. J. Gardner, L. C. Varner & M. P. Angle, 1986b. The residence times of eight trace metals in a closed basin Antarctic lake. Hydrobiologia 134: 249–255.Google Scholar
  16. Hardie, L. A. & H. P. Eugster, 1970. The evolution of closed-basin brines. Miner. Soc. Am. Spec. Publ. 3: 273–290.Google Scholar
  17. Howard-Williams, C., C. L. Vincent, P. A. Broady & W. F. Vincent, 1986. Antarctic stream ecosystems: Variability in environmental properties and algal community structure. Int. Revue ges. Hydrobiol. 71: 511–544.Google Scholar
  18. Jacobs, L., S. Emerson & J. Skei, 1985. Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway. Geochim. Cosmochim. Acta 49: 1433–1444.Google Scholar
  19. Keys, J. R. & K. Williams, 1981. Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochim. Cosmochim. Acta 45: 2299–2309.Google Scholar
  20. Livingstone, D. H., 1963. Chemical composition of rivers and lakes. U.S. Geol. Surv. Prof. Paper 440-G.Google Scholar
  21. Mackenzie, F. T. & R. M. Garrels, 1966. Chemical mass balance between rivers and oceans. Am. J. Sci. 264: 507–525.Google Scholar
  22. Martin, J. M. & M. Whitfield, 1983. The significance of river input of chemical elements to the ocean. In C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton & E. D. Goldberg (eds.), Trace metals in seawater. Plenum Press, NY: 265–296.Google Scholar
  23. Mason, B., 1966. Principles of geochemistry (3rd ed.). John Wiley & Sons, Inc., NY: 329 pp.Google Scholar
  24. Maybeck, M., 1982. Carbon nitrogen and phosphorus transport by world rivers. Amer. J. Sci. 282: 401–450.Google Scholar
  25. McKay, C. P., G. D. Clow, R. A. Wharton & S. W. Squyres, 1985. Thickness of ice on perennially frozen lakes. Nature 313: 561–562.Google Scholar
  26. Parker, B. C., G. M. Simmons, K. G. Seaburg, D. Cathey & F. C. T. Allnut, 1982. Comparative ecology of plankton communities in seven Antarctic oasis lakes. J. Plank. Res. 4(2): 271–286.Google Scholar
  27. Porterfield, W. W., 1984. Inorganic chemistry: A unified approach. Addison-Wesley Publishing Co., Reading, MA: 688 pp.Google Scholar
  28. Rast, W. F. & G. F. Lee, 1978. Summary analysis of the U.S. portion of the North American OECD eutrophication study results emphasizing nutrient loading lake response relationships and trophic state indices. U.S. EPA. EPA 600/3–78–008, Corvallis Environmental Research Laboratory, Corvallis, OR: 454 pp.Google Scholar
  29. Spencer, R. J., H. P. Eugster, B. F. Jones & S. L. Rettig, 1985. Geochemistry of Great Salt Lake, Utah. I: Hydrochemistry since 1850. Geochim. Cosmochim. Acta 49: 727–737.Google Scholar
  30. Torii, T., N. Yamagata, S. Nakaya, S. Murata, T. Hashimoto, O. Matsubaya & H. Sakai, 1975. Geochemical aspects of the McMurdo saline lakes with special emphasis on the distribution of nutrient matters. In T. Torii (ed.), Geochemical and geophysical studies in Dry Valleys, Victoria Land, Antarctica. Memoirs Natn. Inst. Polar Res. (Japan) Spec. Issue No. 4: 5–29.Google Scholar
  31. Vincent, W. F., 1981. Production strategies in Antarctic inland waters: Phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 6: 1215–1224.Google Scholar
  32. Von Damm, K. L. & J. M. Edmond, 1984. Reverse weathering in the closed-basin lakes of the Ethiopian Rift. Amer. J. Sci. 284: 835–862.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • William J. Green
    • 1
  • Thomas J. Gardner
    • 1
  • Timothy G. Ferdelman
    • 1
  • Michael P. Angle
    • 1
  • Lawrence C. Varner
    • 1
  • Philip Nixon
    • 1
  1. 1.School of Interdisciplinary StudiesMiami UniversityOxford

Personalised recommendations