Hydrobiologia

, Volume 63, Issue 2, pp 135–143 | Cite as

Growth interactions among blue-green (Anabaena Oscillarioides, Microcystis aeruginosa) and green (Chlorella sp.) algae

  • Catherine W. Y. Lam
  • Warwick B. Silvester
Article

Abstract

The growth interactions amongst the blue-green algal species Anabaena oscillarioides, Microcystis aeruginosa and the green alga, Chlorella sp. were studied both in mixed cultures and in filter cultures separated by a membrane filter in the two arms of an interaction U-tube. The role of nutrients especially phosphate upon the interaction has also been studied.

Anabaena and Microcystis both inhibited the growth of Chlorella while Microcystis also inhibited the growth of Anabaena. The inhibitory effect of Microcystis was found to be dependent on high concentrations of the initial algal inocula and independent of the initial concentration of nutrients such as inorganic phosphate, indicating that the nature of the inhibition is probably due to the production of inhibitory extracellular products by Microcystis. On the other hand, the inhibitory effect of Anabaena on Chlorella is the consequence of nutrient competition with Anabaena competing more effectively for the available phosphate.

Keywords

algal interaction Anabaena oscillarioides Chlorella extracellular products Microcystis aeruginosa nutrient competition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C. T., Adams, G. A. & Hughes, E. O. 1954. A polysaccharide from the blue-green Anabaena cylindica. Can. J. Chem. 32: 999–1004.CrossRefGoogle Scholar
  2. Biswas, B. B. 1957. Cytochemical studies on the central body of Cyanophyceae. Cytologia 22: 90–95.CrossRefGoogle Scholar
  3. Fay, P., Kumar, H. D. & Fogg, G. E. 1964. Cellular factors affecting nitrogen fixation in the blue-green alga Chlorogloea fritchii. J. Gen. Microbiol. 35: 351–360.CrossRefPubMedGoogle Scholar
  4. Fitzgerald, G. P. 1968. Detection of limiting or surplus nitrogen in algae and aquatic weeds. J. Phycol. 4: 121–126.CrossRefPubMedGoogle Scholar
  5. Fitzgerald, G. P. 1969. Field and laboratory evaluations of bioassays for nitrogen and phosphorus with algae and aquatic weeds. Limnol. Oceanogr. 14: 206–212.CrossRefGoogle Scholar
  6. Fogg, G. E. 1952. The production of extracellular nitrogenous substances by a blue-green alga. Proc. Roy. Soc. B. 139: 372–397.CrossRefGoogle Scholar
  7. Fogg, G. E. 1962. Nitrogen fixation. In: Physiology and biochemistry of algae (R. A. Lewin, ed.), pp. 161–170. Academic Press, New York and London.Google Scholar
  8. Gerloff, G. C. & Skoog, F. 1954. Cell contents of nitrogen and phosphorus as a measure of this availability for growth of Microcystis aeruginosa. Ecology 35: 348–353.CrossRefGoogle Scholar
  9. Gorham, P. R. 1964. Toxic algae. In: Algae and Man (D. F. Jackson, ed.) pp. 307–336. Plenum Press, New York.CrossRefGoogle Scholar
  10. Gorham, P. R., McLachlan, J. S., Hammer, U. T. & Kim, W. E. 1964. Isolation and culture of toxic strains of Anabaena flos-aquae (lyngb.) de Bréb. Verh. Int. Verein. Theor. Angew. Limnol. 15: 796–805.Google Scholar
  11. Goryunova, S. V. & Rzhanova, G. N. 1964. Vital excretions of nitrogen-containing substances in Lyngbya aestuarii and their physiological role. In: Biology of the Cyanophyta (V. D. Fedorov and M. M. Telitchenko, eds.), pp. 111-118. Moscow Univ. Press. (in Russian with English summary).Google Scholar
  12. Hartman, R. T. 1960. Algae and metabolites of natural waters. In: The ecology of algae (C. A. Tyron and R. T. Hartman, eds.), pp. 38-55. Special publication No. 2 Pymatuning Laboratory of Field Biology, University of Pittsburgh.Google Scholar
  13. Jakob, H. 1954. Sur les propriétés antibiotiques énergiques d'une algue du sol: Nostoc muscorum Ag. C. R. Jebd. Seanc. Acad. Sci. Paris 238: 2018. Cited in: Extracellular products of blue-green algae (B. A. Whitton, 1975). J. Gen. Microbiol. 40: 1–11.Google Scholar
  14. Klein, R. M. & Cronquist, A. 1967. A consideration of the ecolutionary and taxonomic significance of some biochemical, micromorphological and physiological characters in the Thallophytes. Quart. Rev. Bio. 42: 105–296.CrossRefGoogle Scholar
  15. Kroes, H. W. 1971. Growth interactions between Chlamydomonas globosa Snow and Chlorococcum ellipsoideum Deacon and Bold under different experimental conditions with special attention to the role of pH. Limn. Oceanogr. 16: 869–879.CrossRefGoogle Scholar
  16. Kroes, H. W. 1973. A spin filter system for the study of algal interactions. Oecologia 11 (2): 93–98.CrossRefGoogle Scholar
  17. Lefèvre, M. L. 1964. Extracellular products of algae. In: Algae and Man (D. F. Jackson, ed.), pp. 337–367. Plenum Press, New York.CrossRefGoogle Scholar
  18. Lefèvre, M. & Nisbet, M. 1950. Sur la sécrétion, par certaines Cyanophytes, de substances algostatiques dans les collections d'eau naturelles. C. R. Acad. Sci. Paris 230: 2226.Google Scholar
  19. Lefèvre, M., Jakob, H. & Nisbet, M. 1952. Auto-et hétéroantagonisme chez les algues d'eau douce. Ann. Station Centr. Hydrobiol. Appl. 4: 197 pp. Cited in: Composition and succession of Cyanophycean waterblooms (B. D. Vance, 1965). J. Phycol. 1: 81–86.Google Scholar
  20. McVeigh, I. & Brown, W. H. 1954. In vitro growth of Chlamydomonas chlamydogama Bold. and Haematococcus plavialis Flotow em. Wille in mixed cultures. Bull. Torrey Bot. Club 81: 218–233.CrossRefGoogle Scholar
  21. Moore, B. G. & Tischer, R. G. 1965. Biosynthesis of extracellular polysaccharides by the blue-green alga Anabaena flos-aquae. Can. J. Microbiol. 11 (6): 877–885.CrossRefPubMedGoogle Scholar
  22. Murphy, J. & Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chim. Acta 27: 31–36.CrossRefGoogle Scholar
  23. Pratt, R. 1940. Influence of the size of the inoculum on the growth of Chlorella vulgaris in freshly prepared culture medium. Am. J. Bot. 27: 52–56.CrossRefGoogle Scholar
  24. Proctor, V. W. 1957. Studies of algal antibiosis using Haematococcus and Chlamydomonas. Limnol. Oceanogr. 2: 125–139.CrossRefGoogle Scholar
  25. Reichardt, W. 1971. Catalytic mobilisation of phosphate in lake water and by Cyanophyta. Hydrobiologia 38: 377–394.CrossRefGoogle Scholar
  26. Rzhanova, G. N. 1967. Extracellular nitrogen containing compounds of two nitrogen fixing species of blue-green algae. Microbiology 36: 536–540.Google Scholar
  27. Shapiro, J. 1970. A statement on phosphorus. Jour. Wat. Pollut. Control Fed. 42: 772–775.Google Scholar
  28. Shapiro, J. 1973. Blue-green algae: why they become dominant. Science 179: 382–384.CrossRefPubMedGoogle Scholar
  29. Singh, R. N. 1955. Limnological relations of Indian inland waters with special reference to waterblooms. Verh. Int. Verein. Theor. Angew. Limnol. 12: 831–836.Google Scholar
  30. Stewart, W. D. P. 1966. Nitrogen fixation in plants. Athlone Press of the University of London. 168 pp.Google Scholar
  31. Stewart, W. D. P. & Alexander, G. 1971. Phosphorus availability and nitrogenase activity in aquatic blue-green algae. Freshwater Biol. 1: 389–404.CrossRefGoogle Scholar
  32. Sze, P. & Kingsbury, J. M. 1974. Interaction of phytoplankters cultures from a polluted saline lake, Onondaga Lake, New York. J. Phycol. 10: 5–8.Google Scholar
  33. Tischer, R. G. 1965. Observations on the pure culture for Anabaena flos aquae. A37. Nature 205 (4969): 419–420.CrossRefGoogle Scholar
  34. Vance, B. D. 1965. Composition and succession of Cyanophycean water blooms. J. Phycol. 1: 81–86.CrossRefGoogle Scholar
  35. Vincent, W. F. 1975. Growth of blue-green algae in oxidation ponds. B. Sc. (hons) thesis, University of Auckland, New Zealand.Google Scholar
  36. Wallen, D. G. & Green, G. H. 1971. The value of the photosynthate in natural phytoplankton populations in relation to light quality. Mar. Biol. 10: 157–168.CrossRefGoogle Scholar
  37. Walsby, A. E. 1965. Biochemical studies on the extracellular polypeptides of Anabaena cylindrica Lemm. Br. Phycol. Bull. 2 (6): 514–515.Google Scholar
  38. Watanabe, A. 1951. Production in cultural solution of some amino acids by the atmospheric nitrogen fixing blue-green algae. Arch. Biochem. Biophys. 34: 50–55.CrossRefPubMedGoogle Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1979

Authors and Affiliations

  • Catherine W. Y. Lam
    • 1
  • Warwick B. Silvester
    • 1
  1. 1.Botany DepartmentUniversity of AucklandAuklandNew Zealand
  2. 2.Department of Biological SciencesUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations