Advertisement

Plant Growth Regulation

, Volume 15, Issue 3, pp 247–260 | Cite as

Gibberellin conjugates: an overview

  • G. Schneider
  • W. Schliemann
Article

Abstract

This article surveys the currently isolated and identified GA conjugates, their synthesis and evaluates modern methods for analysing GA glucose conjugates. The metabolism of applied GAs in higher plant systems leading, in most cases, to GA conjugates is also considered. The enzymology of the formation and hydrolysis of GA glucose conjugates is discussed in connection with their possible physiological function.

Key words

chemical synthesis and analysis enzymology of GA glucose conjugates formation and conversion in vivo gibberellin conjugates natural occurrence physiological functions 

Abbreviations

API =

atmospheric pressure ionization

FAB =

fast atom bombardment

GA-GE =

gibberellin glucosyl ester

GA-O-G =

gibberellin-O-glucoside

GC =

gas chromatography

GC-MS =

combined gas chromatography-mass spectrometry

HPLC =

high performance liquid chromatography

LC-MS =

combined high performance liquid chromatography-mass spectrometry

MS =

mass spectrometry

NMR =

nuclear magnetic resonance

PME =

permethyl

SIM =

selected ion monitoring

TMS =

trimethylsilyl

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asakawa Y, Tamari K, Shoji A and Kaji J (1974) Metabolic products of gibberellin A3 and their interconversion in dwarf kidney bean plants. Agric Biol Chem 38: 719–725Google Scholar
  2. 2.
    Barendse GWM (1971) Formation of bound gibberellins in Pharbitis nil. Planta 99: 290–301Google Scholar
  3. 3.
    Barendse GWM (1974) Accumulation and metabolism of radioactive gibberellic acid in seedlings of Pharbitis nil Choisy. In: Tamura S (ed) Plant Growth Substances 1973, pp 332–341. Tokyo: HirokawaGoogle Scholar
  4. 4.
    Barendse GWM (1976) The metabolism of gibberellins in Pharbitis nil. In: Pilet E-P (ed) Abstr. 9th Intern. Conf. Plant Growth Substances, p 24. LausanneGoogle Scholar
  5. 5.
    Barendse GWM and De Klerk GJM (1975) The metabolism of applied gibberellic acid in Pharbitis nil Choisy: tentative identification of its sole metabolite as gibberellic acid gluco-side and some of its properties. Planta 126: 25–35Google Scholar
  6. 6.
    Barendse GWM, Kende H and Lang A (1968) Fate of radioactive gibberellin A1 in maturing and germinating seeds of peas and Japanese morning glory. Plant Physiol 43: 815–822Google Scholar
  7. 7.
    Benes I (1983) Studie v rade diterpenu. Thesis, Czechoslovakian Academy of Sciences, PragueGoogle Scholar
  8. 8.
    Blechschmidt S, Castel U, Gaskin P, Hedden P, Graebe JE and MacMillan J (1984) GC/MS Analysis of the plant hormones in seeds of Cucurbita maxima. Phytochemistry 23: 553–558CrossRefGoogle Scholar
  9. 9.
    Crozier A, Kuo CC, Durley RC and Pharis RP (1970) The biological activities of 26 gibberellins in nine plant bioassays. Can J Bot 48: 867–877Google Scholar
  10. 10.
    Crozier A, Turnbull CGN, Malcolm JM and Graebe JE (1991) Gibberellin metabolism in cell-free preparations from Phaseolus coccineus. In: Takahashi N, Phinney BO and MacMillan J (eds) Gibberellins, pp 83–93. New York: SpringerGoogle Scholar
  11. 11.
    Dathe W, Sembdner G, Kefeli VI and Vlasov PV (1978) Gibberellins, abscisic acid, and related inhibitors in branches and bleeding sap of birch (Betula pubescens Ehrh). Biochem Physiol Pflanzen 173: 238–248Google Scholar
  12. 12.
    Dathe W, Sembdner G, Yamaguchi I and Takahashi N (1982) Gibberellins and growth inhibitors in spring bleeding sap, roots and branches of Juglans regia L. Plant Cell Physiol 23: 115–123Google Scholar
  13. 13.
    Davies PJ (ed) (1987) Plant Hormones and their Role in Plant Growth and Development. Dordrecht, Boston, Lancaster: Martinus Nijhoff PublGoogle Scholar
  14. 14.
    Davies PJ, Birnberg PR, Maki SL and Brenner ML (1986) Photoperiod modification of [14C]gibberellin A12 aldehyde metabolism in shoots of pea, line G2. Plant Physiol 81: 991–996Google Scholar
  15. 15.
    Davies LJ and Rappaport L (1975) Metabolism of tritiated gibberellins in d-5 dwarf maize. I. In excised tissue and intact dwarf and normal plants. Plant Physiol 55: 620–625Google Scholar
  16. 16.
    Davies LJ and Rappaport L (1975) Metabolism of tritiated gibberellins in d-5 dwarf maize. II. [3H]Gibberellin A1, [3H]gibberellin A3, and related compounds. Plant Physiol 56: 60–66Google Scholar
  17. 17.
    De Bottini GA, Bottini R, Koshioka M, Pharis RP and Coombe BG (1987) Metabolism of [3H]gibberellin A5 by immature seeds of apricot (Prunus armeniaca L.). Plant Physiol 83: 137–142Google Scholar
  18. 18.
    Doumas P, Imbault N, Moritz T and Oden PC (1992) Detection and identification of gibberellins in douglas fir (Pseudotsuga menziesii) shoots. Physiol Plant 85: 489–494CrossRefGoogle Scholar
  19. 19.
    Durley RC, Railton ID and Pharis RP (1974) The metabolism of gibberellin A1 and gibberellin A14 in seedlings of dwarf Pisum sativum. In: Tamura S (ed) Plant Growth Substances 1973, pp 285–293. Tokyo: HirokawaGoogle Scholar
  20. 20.
    Esteban Hopp H and Favret EA (1980) Metabolism of [3H]-gibberellin A1 in a gigas mutant of barley. Plant Physiol 65(Suppl. 95)Google Scholar
  21. 21.
    Fang N and Rappaport L (1990) GAs chromatography/mass spectrometry of permethylated gibberellins. Biomed Environ Mass Spectrom 19: 123–128Google Scholar
  22. 22.
    Frydman VM and MacMillan J (1975) The metabolism of gibberellins A9, A20, and A29 in immature seeds of Pisum sativum cv. Progress No. 9. Planta 125: 181–195Google Scholar
  23. 23.
    Garcia-Martinez JL, Ohlrogge JB and Rappaport L (1981) Differential compartmentation of gibberellin A1 and its metabolites in vacuoles of cowpea and barley leaves. Plant Physiol 68: 865–867Google Scholar
  24. 24.
    Gaskin P and MacMillan J (1991) GC-MS of Gibberellins and Related Compounds: Methodology and a Library of Spectra. Bristol: Cantocks EnterprisesGoogle Scholar
  25. 25.
    Graebe JE, Großelindemann E, Stöckl D and Zander M (1987) Gibberellin biosynthesis in cell-free systems and germinating seeds. In: Lilov D, Vassilev G, Christov Ch and Andonova T (eds) Plant Growth Regulators, Vol 1, pp 29–38. Sofia: Bulg Acad SciGoogle Scholar
  26. 26.
    Harada H and Yokota T (1970) Isolation of gibberellin A8-glucoside from shoot apices of Althaea rosea. Planta 92: 100–104Google Scholar
  27. 27.
    Hemphill DD, Baker LR and Sell HM (1973) Isolation of novel conjugated gibberellins from Cucumis sativus seed. Can J Biochem 51: 1647–1653PubMedGoogle Scholar
  28. 28.
    Heupel RC, Phinney RD, Spray CR, Gaskin P, MacMillan J Hedden P and Graebe JE (1985) Native gibberellins and the metabolism of [14C]gibberellin A53 and of [17-13C,17-3H2]gibberellin A20 in tassels of Zea mays. Phytochemistry 24: 47–53CrossRefGoogle Scholar
  29. 29.
    Hiraga K, Kawabe S, Yokota T, Murofushi N and Takahashi N (1974) Isolation and characterization of plant growth substances in immature seeds and etiolated seedlings of Phaseolus vulgaris. Agric Biol Chem 38: 2521–2527Google Scholar
  30. 30.
    Hiraga K, Yokota T, Murofushi N and Takahashi N (1972) Isolation and characterization of a free gibberellin and glucosyl esters of gibberellins in mature seeds of Phaseolus vulgaris. Agric Biol Chem 36: 345–347Google Scholar
  31. 31.
    Hiraga K, Yokota T, Murofushi N and Takahashi N (1974) Isolation and characterization of gibberellins in mature seeds of Phaseolus vulgaris. Agric Biol Chem 38: 2511–2520Google Scholar
  32. 32.
    Hiraga K, Yokota T and Takahashi N (1974) Biological activity of some synthetic gibberellin glucosyl esters. Phytochemistry 13: 2371–2376CrossRefGoogle Scholar
  33. 33.
    Jensen E, Crozier A and Monteiro AM (1986) Analysis of gibberellins and gibberellin conjugates by ion-suppression reversed-phase high-performance liquid chromatography. J Chromatogr 367: 377–384CrossRefGoogle Scholar
  34. 34.
    Jones DF (1964) Examination of the gibberellins of Zea mays and Phaseolus multiflorus using thin-layer chromatography. Nature 202: 1309–1310PubMedGoogle Scholar
  35. 35.
    Kamiya JE and Graebe JE (1983) The biosynthesis of all major pea gibberellins in a cell free system from Pisum sativum. Phytochemistry 22: 681–689CrossRefGoogle Scholar
  36. 36.
    Keay PJ, Moffatt JS and Mulholland TPC (1965) Some functional derivatives and transformation products of gibberellic acid. J Chem Soc: 1605–1615Google Scholar
  37. 37.
    Keith B, Boal R and Srivastava LM (1980) On the uptake, metabolism and retention of [3H]gibberellin A1 by barley aleurone layers at low temperatures. Plant Physiol 66: 956–961Google Scholar
  38. 38.
    Kende H (1967) Preparation of radioactive gibberellin A1 and its metabolism in dwarf peas. Plant Physiol 42: 1612–1618Google Scholar
  39. 39.
    Knöfel H-D, Schwarzkopf E, Müller P and Sembdner G (1984) Enzymic glucosylation of gibberellins. Plant Growth Regul 3: 127–140Google Scholar
  40. 40.
    Koshioka M, Douglas TJ, Ernst D, Huber J and Pharis RP (1983) Metabolism of [3H]gibberellin A4 in somatic suspension cultures of anise. Phytochemistry 22: 1577–1584CrossRefGoogle Scholar
  41. 41.
    Koshioka M, Harada J, Takeno K, Noma M, Sassa T, Ogiyama K, Taylor JS, Rood SB, Legge RL and Pharis RP (1983) Reversed-phase C18 high-performance liquid chromatography of acidic and conjugated gibberellins. J Chromatogr 256: 101–115CrossRefGoogle Scholar
  42. 42.
    Koshioka M, Hisajima S, Pharis RP and Murofushi N (1985) Metabolism of [3H]gibberellin A5 in cell suspension cultures of Pharbitis nil. Agric Biol Chem 49: 2627–2631Google Scholar
  43. 43.
    Koshioka M, Jones A, Koshioka MN and Pharis RP (1983) Metabolism of [3H]gibberellin A4 in somatic suspension cell cultures of carrot. Phytochemistry 22: 1585–1590CrossRefGoogle Scholar
  44. 44.
    Koshioka M, Jones A and Pharis RP (1988) The potential of cell suspension cultures of Daucus carota L. as a source of isotope labelled gibberellins. I. Metabolism of [3H]GA5. Agric Biol Chem 52: 55–61Google Scholar
  45. 45.
    Koshioka M, Matsuta N, Mander LN and Pharis RP (1988) Gibberellin A5 metabolism in peach suspension cells. In: Pharis PR and Rood SB (eds) Abstr. 13th Intern Conf Plant Growth Substances, No. 218. CalgaryGoogle Scholar
  46. 46.
    Koshioka M, Pharis RP, King RW, Murofushi N and Durley RC (1985) Metabolism of [3H]gibberellin A5 in developing Pharbitis nil seeds. Phytochemistry 24: 663–671CrossRefGoogle Scholar
  47. 47.
    Koshioka M, Pharis RP, Matsuta N and Mander LN (1988) Metabolism of [3H]gibberellin A5 and [2H]gibberellin A5 in cell suspension cultures of Prunus persica. Phytochemistry 27: 3799–3805CrossRefGoogle Scholar
  48. 48.
    Koshioka M, Yamada T, Takeno K, Beall FD, Janzen LM, Pharis RP and Mander LN (1988) Gibberellin A4 metabolism in rice plant seedlings. In: Pharis RP and Rood SB (eds) Abstr. 13th Intern Conf Plant Growth Substances, No. 217. CalgaryGoogle Scholar
  49. 49.
    Larsen K and Rood SB (1988) Gibberellin metabolism in situ in Brassica napus. In: Pharis PR and Rood SB (eds) Abstr. 13th Inter Conf Plant Growth Substances, No. 348. CalgaryGoogle Scholar
  50. 50.
    Lattke P (1987) Untersuchungen zum Metabolismus von Gibberellin A20 und Gibberellin A20-13-O-glucosid in Vicia faba L. Thesis, HalleGoogle Scholar
  51. 51.
    Lattke P and Schneider G (1985) Formation of GA20 glucosyl conjugates in seedlings of Vicia faba. Plant Growth Regul 4: 71–79Google Scholar
  52. 52.
    Lehmann H and Sembdner G (1986) Plant hormone conjugates. In: Purohit SS (ed) Hormonal Regulation of Plant Growth and Development, Vol 3, pp 245–310. Bikaner: Agro Botanical PublGoogle Scholar
  53. 53.
    Lenton JR and Appleford NEJ (1991) Gibberellin production and action during germination of wheat. In: Takahashi N, Phinney BO and MacMillan J (eds) Gibberellins, pp 125–135. New York: SpringerGoogle Scholar
  54. 54.
    Lenton JR, Appleford NEJ and Crokers J (1993) Gibberellin-dependent α-amylase production in germinating wheat (Triticum aestivum) grain. In: Frontiers of Gibberellin Research 1993, Abstr., 19. Tokyo RikenGoogle Scholar
  55. 55.
    Liebisch HW (1974) Uptake, translocation and metabolism of GA3 glucosyl ester. In: Schreiber K, Schütte and Sembdner G (eds) Biochemistry and Chemistry of Plant Growth Regulators, pp 109–113. Halle: Inst Plant Biochem Acad Sci GDRGoogle Scholar
  56. 56.
    Liebisch HW (1980) Vergleichende Untersuchungen über den Stoffwechsel von GA1, GA3 und GA9 in Zellsuspension-skulturen von Lycopersicon esculentum und in verschiedenen intakten Pflanzen. Biochem Physiol Pflanzen 175: 797–805Google Scholar
  57. 57.
    Liebisch HW (1987) Sub-cellular localization of gibberellins in suspension grown tomato cells. In: Lilov D, Vassilev G, Christov Ch and Andonova T (eds) Plant Growth Regulators Vol 1, pp 39–44. Sofia: Bulg Acad SciGoogle Scholar
  58. 58.
    Lorenzi R, Horgan R and Heald JK (1976) Gibberellin A9 glucosyl ester in needles of Picea sitchensis. Phytochemistry 15: 789–790CrossRefGoogle Scholar
  59. 59.
    MacMillan J and Suter PJ (1958) The occurrence of gibberellin A1 in higher plants: isolation from the seed of runner bean (Phaseolus multiflorus). Naturwiss 45: 46–47Google Scholar
  60. 60.
    Maki SL and Brenner ML (1991) [14C]GA12-aldehyde, [14C]GA12, and [2H] and [14C]GA53 metabolism by elongating pea pericarp. Plant Physiol 97: 1359–1366Google Scholar
  61. 61.
    McComb AJ (1961) “Bound” gibberellins in mature runner bean seeds. Nature 192: 575–576Google Scholar
  62. 62.
    McInnes AG, Smith DG, Durley RC, Pharis RP, Arsenault GP, MacMillan J, Gaskin P and Vining LC (1977) Biosynthesis of gibberellins in Gibberella fujikuroi. Gibberellin A47. Can J Biochem 55: 728–735PubMedGoogle Scholar
  63. 63.
    Meyer A, Schneider G and Sembdner G (1984) Endogenous gibberellins and inhibitors of the douglas fir. In: Abstr Intern Symp Plant Growth Regul, 51. LibliceGoogle Scholar
  64. 64.
    Moritz T (1992) The use of combined capillary liquid chromatography/mass spectrometry for the identification of a gibberellin glucosyl conjugate. Phytochem Anal 3: 32–37Google Scholar
  65. 65.
    Moritz T, Schneider G and Jensen E (1992) Capillary liquid chromatography/fast atom bombardment mass spectrometry of gibberellin glucosyl conjugates. Biol Mass Spectrom 21: 554–559Google Scholar
  66. 66.
    Müller P, Knöfel H-D and Sembdner G (1974) Studies on the enzymatical synthesis of gibberellin-O-glucosides. In: Schreiber K, Schütte HR and Sembdner G (eds) Biochemistry and Chemistry of Plant Growth Regulators, pp 115–119. Halle: Inst Plant Biochem Acad Sci GDRGoogle Scholar
  67. 67.
    Murakami Y (1961) Formation of gibberellin A3 glucoside in plant tissues. Bot Mag 74: 424–425Google Scholar
  68. 68.
    Murakami Y (1962) Occurrence of water-soluble gibberellins in higher plants. Bot Mag 75: 451–452Google Scholar
  69. 69.
    Murakami Y (1985) Distribution of bound gibberellin in higher plants and its hydrolysis by enzymes from different sources. Bull Nat Inst Agric Sci, Ser D No. 36: 69–123Google Scholar
  70. 70.
    Murofushi N, Nakayama M, Takahashi N, Gaskin P and MacMillan J (1988) 12-Hydroxylation of gibberellins A12 and A14 by prothallia of Lygodium japonicum and identification of a new gibberellin, GA74. Agric Biol Chem 52: 1825–1828Google Scholar
  71. 71.
    Murofushi N, Yang Y-Y, Yamaguchi I, Schneider G and Kato Y (1992) Liquid chromatography/atmospheric pressure chemical ionization mass spectrometry of gibberellin conjugates. In: Karssen CM, van Loon LC and Vreugdenhil D (eds) Progress in Plant Growth Regulations, pp 900–904. Dordrecht, Boston, London: Kluwer Academic PublishersGoogle Scholar
  72. 72.
    Nadeau R and Rappaport L (1972) Metabolism of gibberellin A1 in germinating bean seeds. Phytochemistry 11: 1611–1616CrossRefGoogle Scholar
  73. 73.
    Nadeau R, Rappaport L and Stolp CG (1972) Uptake and metabolism of 3H-gibberellin A1 by barley aleurone layers: response to abscisic acid. Planta 107: 315–324Google Scholar
  74. 74.
    Nash LJ and Crozier A (1975) Translocation and metabolism of [3H]gibberellins by light-grown Phaseolus coccineus seedlings. Planta 127: 221–231Google Scholar
  75. 75.
    Noma M, Huber J, Ernst D and Pharis RP (1982) Quantitation of gibberellins and the metabolism of [3H]gibberellin A1 during somatic embryogenesis in carrot and anise cell cultures. Planta 155: 369–376Google Scholar
  76. 76.
    Pharis RP, Jenkins PA, Aoki H and Sassa T (1981) Hormonal physiology of wood growth in Pinus radiata D. Don: effects of gibberellin A4 and the influence of abscisic acid upon [3H]gibberellin A4 metabolism. Aust J Plant Physiol 8: 559–570Google Scholar
  77. 77.
    Phinney BO and Schneider G (1987) Metabolism of GA-conjugates in Zea mays. In: Schreiber K, Schütte HR and G Sembdner (eds) Conjugated Plant Hormones. Structures, Metabolism and Function, pp 167–175. Berlin: VEB Deutscher Verlag der WissenschaftenGoogle Scholar
  78. 78.
    Radley M (1958) The distribution of substances similar to gibberellic acid in higher plants. Ann Bot 22: 297–307Google Scholar
  79. 79.
    Rappaport L, Davies L, Lavee S, Nadeau R, Patterson R and Stolp CF (1974) Significance of metabolism of [3H]GA1 for plant regulation. In: Tamura S (ed) Plant Growth Substances 1973, pp 314–324. Tokyo: HirokawaGoogle Scholar
  80. 80.
    Rivier L, Gaskin P, Albone K-YS and MacMillan J (1981) GC-MS Identification of endogenous gibberellins and gibberellin conjugates as their permethylated derivatives. Phytochemistry 20: 687–692CrossRefGoogle Scholar
  81. 81.
    Rood SB (1986) Heterosis and the metabolism of [3H]gibberellin A1 in maize. Can J Bot 64: 2160–2164Google Scholar
  82. 82.
    Rood SB (1993) Genetic and environmental control of gibberellin physiology in Brassica. In: Frontiers of Gibberellin Research 1993, Abstr., 38. Tokyo RikenGoogle Scholar
  83. 83.
    Rood SB, Beall FD and Pharis RP (1986) Photocontrol of gibberellin metabolism in situ in maize. Plant Physiol 80: 448–453Google Scholar
  84. 84.
    Rood SB and Junttila O (1989) Lack of influence of photoperiod on the metabolism of gibberellin A20 in Salix pentandra. Physiol Plant 75: 506–510Google Scholar
  85. 85.
    Rood SB, Kaufman PB, Abe H and Pharis RP (1987) Gibberellins and gravitropism in maize shoots. Endogenous gibberellin-like substances and movement and metabolism of [3H]gibberellin A20. Plant Physiol 83: 645–651PubMedGoogle Scholar
  86. 86.
    Rood SB, Koshioka M, Douglas TJ and Pharis RP (1982) Metabolism of tritiated gibberellin A20 in maize. Plant Physiol 70: 1614–1618Google Scholar
  87. 87.
    Rood SB and Pharis RP (1987) Evidence for reversible conjugation of gibberellins in higher plants. In: Schreiber K, Schütte HR and Sembdner G (eds) Conjugated Plant Hormones. Structure, Metabolism and Function, pp 183–190. Berlin: VEB Deutscher Verlag der WissenschaftenGoogle Scholar
  88. 88.
    Rood SB, Pharis RP and Koshioka M (1983) Reversible conjugation of gibberellins in situ in maize. Plant Physiol 73: 340–346Google Scholar
  89. 89.
    Sato Y, Yamane H, Kobayashi M, Yamaguchi I and Takahashi N (1985) Metabolism of GA9 methyl ester in a culture of prothallia of Lygodium japonicum. Agric Biol Chem 49: 255–258Google Scholar
  90. 90.
    Schliemann W (1984) Hydrolysis of conjugated gibberellins by β-glucosidases of dwarf rice (Oryza sativa L. cv. “Tan-ginbozu”). J Plant Physiol 116: 123–132Google Scholar
  91. 91.
    Schliemann W (1987) Enzymic hydrolysis of gibberellin conjugates. In: Schreiber K, Schütte HR and Sembdner G (eds) Conjugated Plant Hormones. Structure, Metabolism and Function, pp 191–198. Berlin: VEB Deutscher Verlag der WissenschaftenGoogle Scholar
  92. 92.
    Schliemann W (1987) Partial characterization of butanolinsoluble metabolites of [3H]GA1 in maturing fruits of Phaseolus coccineus L. Biochem Physiol Pflanzen 182: 153–163Google Scholar
  93. 93.
    Schliemann W (1988) β-Glucosidase with gibberellin A8-2-O-glucoside hydrolysing activity from pods of runner beans. Phytochemistry 27: 689–692CrossRefGoogle Scholar
  94. 94.
    Schliemann W (1991) Zum Konzept der reversiblen Konjugation bei Phytohormonen. Naturwiss 78: 392–401Google Scholar
  95. 95.
    Schliemann W, Schaller B, Jensen E and Schneider G (1994) Native gibberellin-O-glucosides from mature seeds of Phaseolus coccineus. Phytochemistry 35: 35–38CrossRefGoogle Scholar
  96. 96.
    Schliemann W and Schneider G (1989) Metabolic formation and occurrence of gibberellin A1-3-O-β-D-glucopyranoside in immature fruits of Phaseolus coccineus L. Plant Growth Regul 8: 85–90Google Scholar
  97. 97.
    Schmidt J, Schneider G and Jensen E (1988) Capillary gas chromatography/mass spectrometry of permethylated gibberellin glucosides. Biomed Environ Mass Spectrom 17: 7–13Google Scholar
  98. 98.
    Schneider G (1981) Synthese von Gibberellinglucosiden. Thesis, HalleGoogle Scholar
  99. 99.
    Schneider G (1981) Über strukturelle Einflüsse bei der Glucosylierung von Gibberellinen. Tetrahedron 37: 545–549CrossRefGoogle Scholar
  100. 100.
    Schneider G (1983) Gibberellin conjugates. In: Crozier A (ed) The Biochemistry and Physiology of Gibberellins, Vol 1, pp 389–456. New York: Praeger PublishersGoogle Scholar
  101. 101.
    Schneider G (1987) Gibberellin conjugation. In: Schreiber K, Schütte HR and Sembdner G (eds) Conjugated Plant Hormones. Structure, Metabolism and Function, pp 158–166. Berlin: VEB Deutscher Verlag der WissenschaftenGoogle Scholar
  102. 102.
    Schneider G (1987) Gaschromatographie von Gibberellinen. In: Sembdner G, Schneider G and Schreiber K (eds) Methoden zur Pflanzenhormonanalyse, pp 127–132. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  103. 103.
    Schneider G, Jensen E, Spray CR and Phinney BO (1992) Hydrolysis and reconjugation of gibberellin A20 glucosyl ester by seedlings of Zea mays L. Proc Natl Acad Sci USA 89: 8045–8048PubMedGoogle Scholar
  104. 104.
    Schneider G, Miersch O and Liebisch HW (1977) Synthesis von O-β-D-Glucopyranosyl-Gibberellin-O-β-D-glucopyranosylestern. Tetrahedron Lett: 405–406Google Scholar
  105. 105.
    Schneider G and Moritz T (1993) Synthesis and analysis of gibberellin glycosyl esters. In: Frontiers of gibberellin research 1993, Abstr., 64. Tokyo RikenGoogle Scholar
  106. 106.
    Schneider G, Schaller B and Jensen R (1993) Reverse phase high pressure chromatographic separation of permethylated free and glucosylated gibberellins — a method for the analysis of gibberellin metabolites. Phytochem Anal 5: 111–115Google Scholar
  107. 107.
    Schneider G and Schliemann W (1993) The occurrence of gibberellin-O-glucosides in mature seeds of Gramineae and Leguminosae. XVth Intern Bot Congress Yokohama 1993, Abstr. 4160Google Scholar
  108. 108.
    Schneider G, Schliemann W, Schaller B and Jensen E (1992) Identification of native gibberellin-O-glucosides in Zea mays L. and Hordeum vulgare L. In: Karssen CM, van Loon LC and Vreugdenhil D (eds) Progress in Plant Growth Regulation, pp 566–570. Dordrecht, Boston, London: Kluwer Academic PublishersGoogle Scholar
  109. 109.
    Schneider G and Schmidt J (1990) Conjugation of gibberellins in Zea mays. In: Pharis RP and Rood SB (eds) Plant Growth Substances 1988, pp 300–306. Berlin, Heidelberg: SpringerGoogle Scholar
  110. 110.
    Schneider G and Schmidt J (1994) Synthesis of 13-O-β-D-glucopyranosylgibberellin A5 β-D-glucopyranosyl ester. Liebigs Ann Chem (submitted)Google Scholar
  111. 111.
    Schneider G, Schmidt J and Phinney BO (1987) GC-MS Identification of GA20-13-O-glucoside formed from GA20 in normal plants and dwarf-1 mutants of Zea mays L. Plant Growth Regul 5: 217–223Google Scholar
  112. 112.
    Schneider G, Schreiber K, Jensen E and Phinney BO (1990) Synthesis of gibberellin A29 β-D-glucosides and β-D-glucosyl derivatives of [17-13C, T2]gibberellin A5, A20, and A29. Liebigs Ann Chem 1990: 491–494Google Scholar
  113. 113.
    Schneider G, Sembdner G, Jensen E, Bernhard U and Wagenbreth D (1992) GC-MS Identification of native gibberellin-O-glucosides in pea seeds. Plant Growth Regul 11: 15–18CrossRefGoogle Scholar
  114. 114.
    Schneider G, Sembdner G and Schreiber K (1974) Zur Synthese von Gibberellin-A3-β-D-glucopyranosiden. Z Chem 14: 474–475Google Scholar
  115. 115.
    Schneider G, Sembdner G and Schreiber K (1977) Synthese von O(3)- und O(13)-glucosylierten Gibberellinen. Tetrahedron 33: 1391–1397CrossRefGoogle Scholar
  116. 116.
    Schneider G, Sembdner G and Phinney BO (1984) Synthesis of GA20 glucosyl derivatives and the biological activity of some gibberellin conjugates. J Plant Growth Regul 3: 207–215Google Scholar
  117. 117.
    Schneider G, Sembdner G, Schreiber K and Phinney BO (1989) Partial synthesis of some physiologically relevant gibberellin glucosyl conjugates. Tetrahedron 45: 1355–1364CrossRefGoogle Scholar
  118. 118.
    Schreiber K, Schneider G, Sembdner G and Focke I (1966) Isolierung von O(2)-Acetyl-Gibberellinsäure als Stoffwech-selprodukt von Fusarium moniliforme Sheld. Phytochemistry 5: 1221–1225CrossRefGoogle Scholar
  119. 119.
    Schreiber K, Weiland J and Sembdner G (1967) Isolierung und Struktur eines Gibberellinglucosides. Tetrahedron Lett: 4285–4288Google Scholar
  120. 120.
    Schreiber K, Weiland J and Sembdner G (1969) Synthese von O(2)-β-D-Glucopyranosylgibberellin-A3-methylester. Tetrahedron 25: 5541–5545CrossRefGoogle Scholar
  121. 121.
    Schreiber K, Weiland J and Sembdner G (1970) Isolierung von Gibberellin-A8-O(3)-β-D-glucopyranosid aus Früchten von Phaseolus coccineus. Phytochemistry 9: 189–198CrossRefGoogle Scholar
  122. 122.
    Sembdner G (1974) Conjugates of plant hormones. In: Schreiber K, Schütte HR and Sembdner G (eds) Biochemistry and Chemistry of Plant Growth Regulators, pp 283–302. Halle: Inst Plant Biochem Acad Sci GDRGoogle Scholar
  123. 123.
    Sembdner G, Borgmann E, Schneider G, Liebisch HW, Miersch O, Adam G, Lischewski M and Schreiber K (1976) Biological activity of some conjugated gibberellins. Planta 132: 249–257CrossRefGoogle Scholar
  124. 124.
    Sembdner G, Grß D, Liebisch H-W and Schneider G (1980) Biosynthesis and metabolism of plant hormones. In: MacMillan J (ed) Encyclopedia of Plant Physiology, New Series, Vol 9, pp 281–444. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  125. 125.
    Sembdner G, Knöfel H-D, Schwarzkopf E and Liebisch HW (1985) In vitro glucosylation of gibberellins. Biol Plant 27: 231–236Google Scholar
  126. 126.
    Sembdner G, Schliemann W and Schneider G (1991) Biochemical and physiological aspects of gibberellin conjugation. In: Takahashi N, Phinney BO and MacMillan J (eds) Gibberellins, pp 249–263. New York: SpringerGoogle Scholar
  127. 127.
    Sembdner G and Schneider G (1990) Gibberellin conjugation — a physiologically relevant process in hormone metabolism of plants. In: Kutacek M, Elliott MC and Machackova I (eds) Molecular Aspects of Hormonal Regulation of Plant Development, Proc 14th Biochemical Congress Prague 1988, pp 151–173. The Hague: SPB Academic Publishing bvGoogle Scholar
  128. 128.
    Sembdner G, Schneider G, Weiland J and Schreiber K (1964) Über ein gebundenes Gibberellin aus Phaseolus coccineus L. Experientia 20: 89–90PubMedGoogle Scholar
  129. 129.
    Sembdner G, Weiland J, Aurich O and Schreiber K (1968) Isolation, structure and metabolism of a gibberellin glucoside. In: Plant Growth Regulators, S.C.I. Monograph No. 31, pp 70–86. LondonGoogle Scholar
  130. 130.
    Sembdner G, Weiland J, Schneider G, Schreiber K and Focke I (1972) Recent advances in the metabolism of gibberellins. In: Carr DJ (ed) Plant Growth Substances 1970, pp 145–150. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  131. 131.
    Sponsel VM and MacMillan J (1977) Further studies on the metabolism of gibberellins (GAs) A9, A20 and A29 in immature seeds of Pisum sativum cv. Progress No. 9. Planta 135: 129–136Google Scholar
  132. 132.
    Sponsel VM and MacMillan J (1978) Metabolism of gibberellin A29 in seeds of Pisum sativum cv. Progress No. 9. Use of [2H] and [3H]GAs, and the identification of a new GA catabolite. Planta 144: 69–78Google Scholar
  133. 133.
    Stoddart JL (1984) Growth and gibberellin-A1 metabolism in normal and gibberellin-insensitive (Rht3) wheat (Triticum aestivium L.) seedlings. Planta 161: 432–438CrossRefGoogle Scholar
  134. 134.
    Stoddart JL and Foster CA (1976) ‘Bakanae barley — a new mutant of Hordeum vulgare L. with an accelerated growth rate. In: Pilet E-P (ed) Abstr. 9th Intern. Conf. Plant Growth Substances, pp 374–375. LausanneGoogle Scholar
  135. 135.
    Stoddart JL and Jones RL (1977) Gibberellin metabolism in excised lettuce hypocotyls: evidence for the formation of gibberellin A1 glucosyl conjugates. Planta 136: 261–269Google Scholar
  136. 136.
    Stoddart JL and Venis MA (1980) Molecular and subcellular aspects of hormone action. In: MacMillan J (ed) Encyclopedia of Plant Physiology, New Series, Vol 9, pp 445–510. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  137. 137.
    Turnbull CGN and Crozier A (1989) Metabolism of [1,2-3H]gibberellin A4 by epicotyls and cell-free preparations from Phaseolus coccineus L. seedlings. Planta 178: 267–274Google Scholar
  138. 138.
    Turnbull CGN, Crozier A and Schneider G (1986) HPLC-Based methods for the identification of gibberellin conjugates: metabolism of [3H]gibberellin A4 in seedlings of Phaseolus coccineus. Phytochemistry 25: 1823–1828CrossRefGoogle Scholar
  139. 139.
    Wample RL, Durley RC and Pharis RP (1975) Metabolism of gibberellin A4 by vegetative shoots of douglas fir at three stages of ontogeny. Physiol Plant 35: 273–278Google Scholar
  140. 140.
    Yamaguchi I, Kobayashi M and Takahashi N (1980) Isolation and characterization of glucosyl esters of gibberellin A5 and A44 from immature seeds of Pharbitis purpurea. Agric Biol Chem 44: 1975–1977Google Scholar
  141. 141.
    Yamaguchi I, Yokei M, Nishizawa M, Yang YY, Chinio M and Murofushi N (1993) Immunological technique in the research of gibberellins. XVth Intern Bot Congress Yokohama 1993, Abstr. 4.3.1.3Google Scholar
  142. 142.
    Yamaguchi I, Yokota T, Yoshida S and Takahashi N (1979) High pressure liquid chromatography of conjugated gibberellins. Phytochemistry 18: 1699–1702CrossRefGoogle Scholar
  143. 143.
    Yamane H (1993) Antheridiogens and gibberellins in schizaeaceous ferns. XVth Intern Bot Congress Yokohama 1993, Abstr. 4.3.2.3Google Scholar
  144. 144.
    Yamane H, Murofushi N, Osada H and Takahashi N (1977) Metabolism of gibberellins in early immature bean seeds. Phytochemistry 16: 831–835CrossRefGoogle Scholar
  145. 145.
    Yamane H, Murofushi N and Takahashi N (1975) Metabolism of gibberellins in maturing and germinating bean seeds. Phytochemistry 14: 1195–1200CrossRefGoogle Scholar
  146. 146.
    Yamane H, Sato Y, Nohara K, Nakayama M, Murofushi N, Takahashi N, Takeno K, Furuya M, Furber M and Mander LN (1988) The methyl ester of a new gibberellin, GA73: the principal antheridiogen in Lygodium japonicum. Tetrahedron Lett 29: 3959–3962CrossRefGoogle Scholar
  147. 147.
    Yamane H, Takahashi N, Takeno K and Furuya M (1979) Identification of gibberellin A9 methyl ester as a natural substance regulating formation of reproductive organs in Lygodium japonicum. Planta 147: 251–256Google Scholar
  148. 148.
    Yamane H, Yamaguchi I, Kobayashi M, Takahashi M, Sato Y, Takahashi N, Iwatsuki K, Phinney BO, Spray CR, Gaskin P and MacMillan J (1985) Identification of ten gibberellins from sporophytes of the tree fern, Cyathea australis. Plant Physiol 78: 899–903Google Scholar
  149. 149.
    Yamane H, Yamaguchi I, Murofushi N and Takahashi N (1971) Isolation and structure of gibberellin A35 and its glucoside from immature seed of Cytisus scoparius. Agric Biol Chem 35: 1144–1146Google Scholar
  150. 150.
    Yamane H, Yamaguchi I, Murofushi N and Takahashi N (1974) Isolation and structures of gibberellin A35 and its glucoside from immature seed of Cytisus scoparius. Agric Biol Chem 38: 649–655Google Scholar
  151. 151.
    Yokota T, Hiraga K, Yamane H and Takahashi N (1975) Mass spectrometry of trimethylsilyl derivatives of gibberellin glucosides and glucosyl esters. Phytochemistry 14: 1569–1574CrossRefGoogle Scholar
  152. 152.
    Yokota T, Kobayashi S, Yamane H and Takahashi N (1978) Isolation of a novel gibberellin glucoside, 3-O-β-D-glucopyranosylgibberellin A1 from Dolichos lablab seed. Agric Biol Chem 42: 1811–1812Google Scholar
  153. 153.
    Yokota T, Murofushi N and Takahashi N (1970) Structure of new gibberellin glucoside in immature seeds of Pharbitis nil. Tetahedron Lett 1970: 1489–1491CrossRefGoogle Scholar
  154. 154.
    Yokota T, Murofushi N, Takahashi N and Katsumi M (1971) Biological activities of gibberellins and their glucosides in Pharbitis nil. Phytochemistry 10: 2943–2949CrossRefGoogle Scholar
  155. 155.
    Yokota T, Murofushi N, Takahashi N and Tamura S (1971) Gibberellins in immature seeds of Pharbitis nil. III. Isolation and structures of gibberellin glucosides. Agric Biol Chem 35: 583–595Google Scholar
  156. 156.
    Yokota T, Takahashi N, Murofushi N and Tamura S (1969) Isolation of gibberellins A26 and A27 and their glucosides from immature seeds of Pharbitis nil. Planta 87: 180–184Google Scholar
  157. 157.
    Yokota T, Takahashi N, Murofushi N and Tamura S (1969) Structures of new gibberellin glucosides in immature seeds of Pharbitis nil. Tetrahedron Lett 1969: 2081–2084CrossRefGoogle Scholar
  158. 158.
    Yokota T, Yamazaki S, Takahashi N and Iitaka Y (1974) Structure of pharbitic acid, a gibberellin-related diterpenoid. Tetrahedron Lett 1974: 2957–2960CrossRefGoogle Scholar
  159. 159.
    Zhu Y-X, Davies PJ and Halinska A (1991) Metabolism of gibberellin A12 and A12-aldehyde in developing seeds of Pisum sativum L. Plant Physiol 97: 26–33Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • G. Schneider
    • 1
  • W. Schliemann
    • 1
  1. 1.Institute of Plant BiochemistryHalle (Saale)Germany

Personalised recommendations