, Volume 88, Issue 1, pp 17–24 | Cite as

Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis

  • Akito Kaga
  • Norihiko Tomooka
  • Yoshinobu Egawa
  • Kazuyoshi Hosaka
  • Osamu Kamijima


The genetic variation among 23 accessions of 5 species in the subgenus Ceratotropis, genus Vigna, were investigated by random amplified polymorphic DNA (RAPD) analysis. A total of 404 fragments amplified with 24 primers were scored and analyzed by cluster analysis. The accessions used were separated into two main groups with an average of 70% differences. Within the main groups, five subgroups were recognized, which are in complete agreement with taxonomic species. Wild forms were always grouped with their most closely related cultivated forms and they showed variation in each species. The largest intraspecific variation was found in V. radiata (mungbean), in which wild forms (V. radiata var. sublobata) were highly different from each other and from cultivated forms. V. angularis (adzuki bean) showed the least variation and thus, was probably differentiated in relatively recent times.

Key words

Ceratotropis genetic relationships Vigna RAPD analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, C.S. & R.W. Hartmann, 1978. Interspecific hybridization between rice bean (Vigna umbellata (Thunb.) Ohwi & Ohashi) and adzuki bean (V. angularis (Willd.) Ohwi & Ohashi). J. Am. Soc. Hort. Sci. 103: 435–438.Google Scholar
  2. Arora, R.K., K.P.S. Chandel & B.S. Joshi, 1973. Morphological diversity in Phaseolus sublobatus Roxb. Curr. Sci. 42: 359–361.Google Scholar
  3. Campos, L.P., J.V. Raelson & W.F. Grant, 1994. Genome relationships among Lotus species based on random amplified polymorphic DNA (RAPD). Theor. Appl. Genet. 88: 417–422.Google Scholar
  4. Chandel, K.P.S., 1984. The wild ancestors of urid and mung beans (Vigna mungo (L.) Hepper and V. radiata (L.) Wilczek). Bot. J. Linn. Soc. 89: 85–96.Google Scholar
  5. Chen, N.C., L.R. Baker & S. Honma, 1983. Interspecific crossability among four species of Vigna food legumes. Euphytica 32: 925–937.Google Scholar
  6. Dana, S., 1980. Genomic relationship in the genus Vigna and its implication in breeding programme. In: K.S. Gill (Ed.), Breeding methods for the improvement of pulse crops, pp. 357–367. Ludhiana, Punjab Agr. Univ.Google Scholar
  7. Demeke, T., R.P. Adams & R. Chibbar, 1992. Potential taxonomic use of random amplified polymorphicDNA (RAPD): a case study in Brassica. Theor. Appl. Genet. 84: 990–994.Google Scholar
  8. dos Santos, J.B., J. Nienhuis, P. Skroch, J. Tivang & M.K. Slocum, 1994. Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor. Appl. Genet. 87: 909–915.Google Scholar
  9. Doyle, J.J. & J.L. Doyle, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.Google Scholar
  10. D'Urzo, M.P., M. Pedalino, S. Grillo, R. Rao & M. Tucci, 1990. Variability in major seed proteins in different Vigna species. In: N.Q. Ng & L.M. Monti (Eds), Cowpea genetic resources, pp. 90–100. International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria.Google Scholar
  11. Egawa, Y., 1988. Phylogenetic differentiation between three Asian Vigna species, V. radiata, V. mungo and V. umbellata. Bull. Natl. Inst. Agrobiol. Resour., Tsukuba, Japan 4: 189–200.Google Scholar
  12. Fatokun, C.A., D. Danesh, N.D. Young & E.L. Stewart, 1993. Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor. Appl. Genet. 86: 97–104.Google Scholar
  13. Jaaska, V. & V. Jaaska, 1990. Isozyme variation in Asian beans. Bot. Acta 103: 223–322.Google Scholar
  14. Jain, H.K. & K.L. Mehra, 1980. Evolution, adaptation, relationships and uses of the species of Vigna cultivated in India. In: R.J. Summerfield & A. Bunting (Eds), Advances in Legume Sciences, pp. 459–468. Royal Botanic Gardens, Kew.Google Scholar
  15. Kaga, A., K. Hosaka, T. Kimura, S. Misoo & O. Kamijima, 1993. Application of random amplified polymorphic DNA (RAPD) analysis for adzuki bean and its related genera. Sci. Rept. Fac. Agr. Kobe Univ. 20: 171–176.Google Scholar
  16. Kazan, K., J.M. Manners & D.F. Cameron, 1993. Genetic variation in agronomically important species of Stylosanthes determined using random amplified polymorphic DNA markers. Theor. Appl. Genet. 85: 882–888.Google Scholar
  17. Maekawa, F., 1955. Topo-morphological and taxonomical studies in Phaseoleae, Leguminosae. Jap. J. Bot. 15: 103–116.Google Scholar
  18. Maréchal, R., J.M. Mascherpa & F. Stainier, 1978. Etude taxonomique d'un groupe complexe d'espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l'analyse informatique. Boissiera 28: 1–273.Google Scholar
  19. Miyazaki, S., 1982. Classification and phylogenetic relationships of the Vigna radiata-mungo-sublobata complex. Bull. Nat. Inst. Agr. Sci. D. 33: 1–61.Google Scholar
  20. M'Ribu, H.K. & K.W. Hilu, 1994. Detection of interspecific and intraspecific variation in Panicum millets through random amplified polymorphic DNA. Theor. Appl. Genet. 88: 412–416.Google Scholar
  21. Rao, R., M.D. Vaglio, M.P. D'Urzo & L. Monti, 1992. Identification of Vigna spp. through specific seed storage polypeptides. Euphytica 62: 39–43.Google Scholar
  22. Smartt, J., 1990. Evolution and genetic resources. In: J. Smartt (Ed.), Grain legumes, pp. 140–175. Cambridge University Press, Cambridge.Google Scholar
  23. Sneath, P.H.A. & R.R. Sokal, 1973. Numerical taxonomy. W.H. Freeman and Company, San Francisco.Google Scholar
  24. Thormann, C.E., M.E. Ferreira, L.E.A. Camargo, J.G. Tivang & T.C. Osborn, 1994. Comparison of RFLP and RAPD markers to estimating genetic relationships with and among cruciferous species. Theor. Appl. Genet. 88: 973–980.Google Scholar
  25. Tomooka, N., 1991. Genetic diversity and landrace differentiation of mungbean, Vigna radiata (L.) Wilczek, and evaluation of its wild relatives (the subgenus Ceratotropis) as breeding materials. Technical Bulletin Tropical Agriculture Research Center. Tropical Agriculture Research Center, Japan.Google Scholar
  26. Van Coppenolle, B., I. Watanabe, C.Van Hove, G. Second, N. Huang & S.R. McCouch, 1993. Genetic diversity and phylogeny analysis of Azolla based on DNA amplification by arbitrary primers. Genome 36: 686–693.Google Scholar
  27. Verdcourt, B., 1970. Studies in the Leguminosae-Papilionoideae for the ‘Flora of Tropical East Africa: IV’. Kew Bull. 24: 507–569.Google Scholar
  28. Williams, J.G.K., M.K. Hanafey, J.A. Rafalski & S.V. Tingey, 1993. Genetic analysis using random amplified polymorphic DNA markers. Methods in Enzymology 218: 704–740.Google Scholar
  29. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.Google Scholar
  30. Yamaguchi, H., 1992. Wild and weed adzuki beans in Japan. Econ. Bot. 46: 384–394.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Akito Kaga
    • 1
  • Norihiko Tomooka
    • 2
  • Yoshinobu Egawa
    • 3
  • Kazuyoshi Hosaka
    • 4
  • Osamu Kamijima
    • 5
  1. 1.Division of Science of Biological Resources, Graduate School of Science and TechnologyKobe UniversityKobeJapan
  2. 2.Department of Genetic ResourcesNational Institute of Agrobiological ResourcesTsukuba, IbarakiJapan
  3. 3.Biological Resources DivisionJapan International Research Center for Agricultural SciencesTsukuba, IbarakiJapan
  4. 4.Experimental FarmKobe UniversityKasai, HyogoJapan
  5. 5.Laboratory of Plant Breeding, Faculty of AgricultureKobe UniversityKobeJapan

Personalised recommendations