Advertisement

Hydrobiologia

, Volume 295, Issue 1–3, pp 203–212 | Cite as

Mangrove outwelling: a review

  • S. Y. Lee
Article

Abstract

The export of detritus and faunal biomass from mangroves has long been considered as an important support for offshore biological production and has been widely used as an argument for mangrove conservation. This functional role of the mangroves, like many other paradigms in mangrove ecology, has seldom been put to rigorous test since the hypothesis was postulated about 25 years ago. Past studies on which the hypothesis was based were mostly carried out in mangrove or other wetland environments, little is known about the fate and effects of outwelled detritus on oceanic, offshore, communities. Mass balance studies carried out in the last 15 years tend to suggest that export is common from tidal mangroves, the direction of flow depends, however, on the identity of the chemical species in question. Pore water and groundwater flow can affect tidal material exchange but are poorly studied. Generally, tracer methods using stable isotope ratios or other signatures have suggested that outwelling may be much less significant than expected. Further, most past studies have focussed on particulate matter while it is increasingly apparent that dissolved organics may play a more important role in matter exchange between offshore and mangrove communities. There is also evidence that benthic biomass and richness may not bear any positive or significant relationship with detritus availability.

Key words

mangrove detritus mass balance tidal support 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alongi, D. M., 1987. The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries. Oecologia 71: 537–540.Google Scholar
  2. Alongi, D. M., K. G. Boto & F. Tirendi, 1989. Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical nearshore sediments. Mar. Ecol. Prog. Ser. 56: 133–144.Google Scholar
  3. Alongi, D. M., 1990a. Effect of mangrove detrital outwelling on nutrient regeneration and oxygen fluxes in coastal sediments of the central Great Barrier Reef Lagoon. Estuar. Coast. Shelf Sci. 31: 581–588.Google Scholar
  4. Alongi, D. M., 1990b. Abundances of benthic microfauna in relation to outwellingof mangrove detritus in a tropical coastal lagoon. Mar. Ecol. Prog. Ser. 63: 53–63.Google Scholar
  5. Bärlocher, F., S. Y. Newell & T. L. Arsuffi, 1989. Digestion of Spartina alterniflora Loisel material with and without fungal constituents by the periwinkle Littorina irrorata Say (Mollusca: Gastropoda). J. exp. mar. Biol. Ecol. 130: 45–53.CrossRefGoogle Scholar
  6. Beever, J. W., D. Simberloff & L. L. King, 1979. Herbivory and predation by the mangrove tree crab Aratus pisonii. Oecologia 43: 317–328.Google Scholar
  7. Benner, R., E. R. Peele & R. E. Hodson, 1986. Microbial utilisation of dissolved organic matter from leaves of the red mangrove, Rhizophora mangle, in the Fresh Creek Estuary, Bahamas. Estuar. coast. shelf Sci. 23: 607–619.Google Scholar
  8. Boto, K. G. & J. S. Bunt, 1981. Tidal export of particulate organic matter from a Northern Australian mangrove system. Estuar. coast. shelf Sci. 13: 247–255.Google Scholar
  9. Boto, K. G. & A. I. Robertson, 1990. The relationship between nitrogen fixation and tidal exports of nitrogen in a tropical mangrove system. Estuar. Coast. Shelf Sci. 31: 531–540.Google Scholar
  10. Boto, K. G. & J. T. Wellington, 1988. Seasonal variations in concentrations and fluxes of dissolved organic and inorganic materials in a tropical, tidally-dominated, mangrove waterway. Mar. Ecol. Prog. Ser. 50: 151–160.Google Scholar
  11. Camilleri, J. C. & G. Ribi, 1986. Leaching of dissolved organic carbon (DOC) from dead leaves, formation of flakes from DOC, and feeding on flakes by crustaceans in mangroves. Mar. Biol. 91: 337–344.Google Scholar
  12. Chalmers, A. G., R. G. Wiegert & P. L. Wolf, 1985. Carbon balance in a salt marsh: interactions of diffusive export, tidal deposition and rainfall-caused erosion. Estuar. coast. shelf Sci. 21: 757–771.Google Scholar
  13. Chansang, H. & S. Poovachiranon, 1985. Fate of mangrove litter in a mangrove forest at Ko Yao Yai, southern Thailand. Estuaries 8: 106A.Google Scholar
  14. Childers, D. L., S. Cofer-Shabica & L. Nakashima, 1993. Spatial and temporal variability in marsh-water column interactions in a southeastern USA salt marsh estuary. Mar. Ecol. Prog. Ser. 95: 25–38.Google Scholar
  15. Chong, V. C., A. Sasekumar, M. U. C. Leh & R. D'Cruz, 1990. The fish and prawn communities of Malaysian coastal mangrove system, with comparisons to adjacent mudflats and inshore waters. Estuar. Coast. Shelf Sci. 31: 703–722.Google Scholar
  16. Clark, P. J., 1985. Nitrogen pools and soil characteristics of a temperate estuarine wetland in eastern Australia. Aquat. Bot. 23: 275–290.CrossRefGoogle Scholar
  17. Dames, R. F., J. D. Spurrier, T. M. Williams, B. Kjerfve, R. G. Zingmark, T. G. Wolaver, T. H. Chrzanowski, H. N. McKellar & F. J. Vernberg, 1991. Annual material processing by a salt marsh-estuarine basin in South Carolina, USA. Mar. Ecol. Prog. Ser. 72: 153–166.Google Scholar
  18. Daniel, P. A. & A. I. Robertson, 1990. Epibenthos of mangrove waterways and open embayments: community structure and the relationship between exported mangrove detritus and epifaunal standing stocks. Estuar. coast. shelf Sci. 31: 599–619.Google Scholar
  19. Dittel, A. I. & C. E. Epifanio, 1990. Seasonal and tidal abundance of crab larvae in a tropical mangrove system, Gulf of Nicoya, Costa Rica. Mar. Ecol. Prog. Ser. 65: 25–34.Google Scholar
  20. Dittel, A. I., C. D. Epifanio & O. Lizano., 1991. Flux of crab larvae in a mangrove creek in the Gulf of Nicoya, Costa Rica. Estuar. Coast. shelf Sci. 32: 129–140.Google Scholar
  21. Fallon, R. D., S. Y. Newell & L. C. Groene, 1985. Phylloplane algae of standing dead Spartina alterniflora. Mar. Biol. 90: 121–127.Google Scholar
  22. Fleming, M., G. Lin & L. da Silveira Lobo Steinberg, 1990. Influence of mangrove detritus in an estuarine ecosystem. Bull. mar. Sci. 47: 663–669.Google Scholar
  23. Flores-Verdugo, F. J., J. W. Jr. Day, R. Briseno-Duenas, 1987. Structure, litterfall, decomposition, and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet. Mar. Ecol. Prog. Ser. 35: 83–90.Google Scholar
  24. Fry, B. & E. B. Sherr, 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. mar. Sci. 27: 13–47.Google Scholar
  25. Fry, B. & E. B. Sherr, 1989. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In P. W. Rundal, J. R. Ehleringer & R. A. Nagy (eds.) Stable Isotopes in Ecological Research. Springer-Verlag, New York: 196–229.Google Scholar
  26. Gearing, J. N., 1988. The use of stable isotope ratios for tracing the nearshore-offshore exchange of organic matter. In B. -O. Jansson (ed.) Coastal-offshore Ecosystem Interactions. Springer-Verlag. Berlin: 69–100.Google Scholar
  27. Gearing, J. N., 1991. The study of diet and trophic relationships through natural abundance 13C. In Coleman, D. C. & Fry, B. (eds.) Carbon Isotope Techniques. Academic Press, New York, 201–218.Google Scholar
  28. Golley, F., H. T. Odum & R. F. Wilson, 1962. The structure and metabolism of a Puerto Rico mangrove forest in May. Ecology 43: 9–19.Google Scholar
  29. Gong, W. K. & J. E. Ong, 1990. Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuar. Coast. Shelf Sci. 31: 519–530.Google Scholar
  30. Graça, M. A. S., L. Maltby & P. Calow, 1993. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: feeding strategies. Oecologia 93: 139–144.Google Scholar
  31. Haines, E. B., 1977. The origins of detritus in Georgia salt marsh estuaries. Oikos 29: 254–260.Google Scholar
  32. Haines, E. B., 1979. Interactions between Georgia salt marshes and coastal waters: a changing paradigm. In R. J. Livington (ed.) Ecological Processes in Coastal and Marine Systems. Plenum Press, New York: 35–46.Google Scholar
  33. Heinle, D. R. & D. A. Flemer, 1976. Flows of materials between poorly flooded tidal marshes and an estuary. Mar. Biol. 35: 359–373.Google Scholar
  34. Hopkinson, C. S., 1988. Patterns of organic carbon exchange between coastal ecosystems: the mass balance approach in salt marsh ecosystems. In B. -O. Jansson (ed.) Coastal-offshore Ecosystem Interactions. Springer-Verlag, Berlin: 122–154.Google Scholar
  35. Jordan, T. E., J. W. Pierce & D. L. Correll, 1986. Flux of particulate matter in the tidal marshes and subtidal shallows of the Rhode River Estuary. Estuaries 9: 310–319.Google Scholar
  36. Kreeger, D. A., R. I. E. Newell & C. J. Langdon, 1990. Effect of tidal exposure on utilization of dietary lignocellulose by the ribbed mussel Geukensia demissa (Dillwyn) (Mollusca: Bivalvia). J. exp. mar. Biol. Ecol. 144: 85–100.CrossRefGoogle Scholar
  37. Langdon, C. J. & R. I. E. Newell, 1990. Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demiss. Mar. Ecol. Prog. Ser. 58: 299–310.Google Scholar
  38. Lee, S. Y., 1989. The importance of Sesarminae crabs Chiromanthes spp. and inundation frequency on the decomposition of mangrove (Kandelia candel (L.) Druce) leaf litter in a Hong Kong tidal shrimp pond. J. exp. mar. Biol. Ecol. 131: 23–43.CrossRefGoogle Scholar
  39. Lee, S. Y., 1990. Primary productivity and particulate organic matter flow in an estuarine mangrove-wetland in Hong Kong. Mar. Biol. 106: 453–463.Google Scholar
  40. Macintosh, D. J., 1981. The importance of mangrove swamps to coastal fisheries and aquaculture. In Proceedings of the Seminar on Some Aspects of Inland Aquaculture. Mangalore, Karnataka, 14 and 15 July, 1980: 27–33.Google Scholar
  41. Malley, D. F., 1978. Degradation of mangrove leaf litter by the tropical sesarmid crab Chiromanthes onycohophorum. Mar. Biol. 49: 377–386.Google Scholar
  42. Martsubroto, P. & N. Naamin, 1977. Relationship between tidal forests (mangroves) and commercial shrimp production in Indonesia. Mar. Res. Indonesia 18: 81–86.Google Scholar
  43. Mazda, Y., H. Yokochi & Y. Sato, 1990. Groundwater flow in the Bashita-Minato mangrove area, and its influence on water and bottom mud properties. Estuar. Coastal Shelf Sci. 31: 621–638.Google Scholar
  44. Moran, M. A., R. J. Wicks & R. E. Hodson, 1991. Export of dissolved organic matter from a mangrove swamp ecosystem: evidence from natural fluorescence, dissolved lignin phenols, and bacterial secondary production. Mar. Ecol. Prog. Ser. 76: 175–184.Google Scholar
  45. Murray, F., 1985. Cycling of fluoride in a mangrove community near a fluoride emission source. J. Appl. Ecol. 22: 277–285.Google Scholar
  46. Newell, S. Y., R. D. Fallon, R. M. Cal Rodriguez & L. C. Groene, 1985. Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead salt-marsh plants. Oecologia 68: 73–79.Google Scholar
  47. Nixon, S. W., 1980. Between coastal marshes and coastal waters — a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity. In P. Hamilton & K. B. MacDonald (eds.), Estuarine wetland Processes. Plenum Publishing Corporation, New York: 437–520.Google Scholar
  48. Nixon, S. W., B. N. Furnas, V. Lee, N. Marshall, J. E. Ong, C. H. Wong, W. K. Gong & A. Sasekumar, 1980. The role of mangroves in the carbon and nutrient dynamics of Malaysia estuaries. In Soepadmo, E., A. N. Rao & D. J. Macintosh (eds.) Mangrove environment: research and development. University of Malaya and UNESCO: 534–544.Google Scholar
  49. Odum, E. P., 1968. A research challenge: evaluating the productivity of coastal and estuarine water. In proceedings of the Second Sea Grant Conference, University of Rhode Island: 63–64.Google Scholar
  50. Odum, E. P., 1984. The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, outwelling and detritus-based food chains. In V. S. Kennedy (ed.) Estuarine Perspectives. Academic Press, New York: 485–495.Google Scholar
  51. Odum, W. E. & E. J. Heald, 1975. The detritus-based food web of an estuarine mangrove community. In Cronin, L. E. (ed.) Estuarine Research, Volume I. Academic Press, New York: 265–286.Google Scholar
  52. Odum, W. E., J. S. Fisher & J. C. Pickral, 1979. Factors controlling the flux of particulate organic carbon from estuarine wetlands. In Livingston, R. J. (ed.) Ecological Processes in Coastal and Marine Systems. Plenum Press, New York: 69–80.Google Scholar
  53. Ong, J. E., 1984. Mangrove outwelling? In J. E. Ong & W. K. Gong (eds.) Productivity of the Mangrove Ecosystem: Management Implications. University Sains Malaysia, Penang: 30–36.Google Scholar
  54. Ovalle, A. R. C., C. E. Rezende, L. D. Lacerda & C. A. R. Silva, 1990. Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba Bay, Brazil. Estuar. Coast. Shelf Sci. 31: 639–650.Google Scholar
  55. Rezende, C. E., L. D. Lacerda, A. R. C. Ovalle, C. A. R. Silva & L. A. Martinelli, 1990. Nature of POC transport in a mangrove ecosystem: a carbon stable isotope study. Estuar. Coast. Shelf Sci. 30: 641–645.Google Scholar
  56. Robertson, A. I., 1986. Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in northeastern Australia. J. exp. mar. Biol. Ecol. 102: 237–248.CrossRefGoogle Scholar
  57. Robertson, A. I., 1987. The determination of trophic relationships in mangrove-dominated systems: areas of darkness. In C. D. Field & A. J. Dartnall (eds.) Mangrove Ecosystems in Asia and the Pacific: status, utilisation and management. Australian Institute of Marine Science, Townsville: 292–304.Google Scholar
  58. Robertson, A. I. & P. A. Daniel, 1989a. The influence of crabs on litter processing in high intertidal mangrove forests of tropical Australia. Oecologia 78: 191–198.Google Scholar
  59. Robertson, A. I. & P. A. Daniel, 1989b. Decomposition and the annual flux of detritus from fallen timber in tropical mangrove forests. Limnol. Oceanogr. 34: 640–646.Google Scholar
  60. Robertson, A. I. & N. C. Duke, 1987. Mangroves as nursery sites of fish and crustaceans in mangrove and other nearshore habitats in tropical Australia. Mar. Biol. 96: 193–205.Google Scholar
  61. Robertson, A. I. & N. C. Duke, 1990. Recruitment, growth and residence time of fishes in a tropical Australian mangrove system. Estuar. Coast. Shelf Sci. 31: 723–743.Google Scholar
  62. Robertson, A. I. & N. C. Duke, 1990. Mangrove fish-communities in tropical Queensland, Australia: Spatial and temporal patterns in densities, biomass and community structure. Mar. Biol. 104: 369–379.Google Scholar
  63. Robertson, A. I., D. M. Alongi, P. A. Daniel, K. G. Boto, 1990. How much mangrove detritus enters the Great Barrier Reef lagoon?. In Choat, J. H., D. Barnes, M. A. Borowitzka, J. C. Coll, P. J. Davies et al. (eds.) Proceedings of the Sixth International Coral Reef Symposium, Townsville, Australia, 8th–12th August 1988. volume 2: Contributed Papers 1988: 601–606.Google Scholar
  64. Robertson, A. I., D. M. Alongi & K. G. Boto, 1992. Food chains and carbon fluxes. In Robertson, A. I. & D. M. Alongi (eds.) Tropical mangrove ecosystems. American Geophysical Union, Washington, D.C.: 293–326.Google Scholar
  65. Rodelli, M. R., J. N. Gearing, P. J. Gearing, N. Marshall & A. Sasekumar, 1984. Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems. Oecologia 61: 326–333.Google Scholar
  66. Rozas, L. P., C. C. McInvor, & W. E. Odum, 1988. Intertidal rivulets and creekbanks: corridors between tidal creeks and marshes. Mar. ecol. Prog. Ser. 47: 303–307.Google Scholar
  67. Snedaker, S. C. 1978. Mangroves: their value and perpetuation. Nat. Resour. 14: 6–13.Google Scholar
  68. Subramanian, P., M. J. Prince Jeyaseelan, K. Krishnamurthy, 1984. The nature of biodegradation of vegetation in mangrove ecosystem. Chem. Ecol. 2 47–68.Google Scholar
  69. Teal, J. M., 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624.Google Scholar
  70. Thom, B. G., 1982. Mangrove ecology — a geomorphological perspective. In Clough, B. F. (ed.) Mangrove ecosystems in Australia. Australian National University Press, Canberra: 3–17.Google Scholar
  71. Thomas, J. P., 1966. The influence of the Altamaha River on primary production beyond the mouth of the river. M. S. Thesis, University of Georgia, Athens: 1–88.Google Scholar
  72. Turner, R. E., 1977. Intertidal vegetation and commercial yields of Penaeid shrimp. Trans. am. Fish. Soc. 106: 411–416.CrossRefGoogle Scholar
  73. Twilley, R. R., 1983. Litter dynamics and organic carbon exchange in black mangrove (Avicennia germinans) basin forests in a southwest Florida estuary. Ph.D. dissertation, University of Florida, Gainesville, 274 pp.Google Scholar
  74. Twilley, R. R., 1985. The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary. Estuar. coast. shelf Sci 20: 543–557.Google Scholar
  75. Twilley, R. R., 1988. Coupling of mangroves to the productivity of estuarine and coastal waters. In B. -O. Jansson (ed.) Coastal-offshore Ecosystem Interactions. Springer-Verlag, Berlin: 155–180.Google Scholar
  76. Twilley, R. R., R. H. Chen & T. Hargis, 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air and Soil Pollut. 64: 265–288.Google Scholar
  77. Twilley, R. R., A. E. Lugo & C. Patterson-Zucca, 1986. Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67: 670–683.Google Scholar
  78. Valk, A. G. Van der & P. M. D. Attiwill, 1984. Decomposition of leaf and root litter of Avicennia marina at Westernport Bay, Victoria, Australia. Aquat. Bot. 18: 205–221.CrossRefGoogle Scholar
  79. Wattayakorn, G., E. Wolanski & B. Kjerve, 1990. Mixing, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand. Estuar. Coast. Shelf Sci. 31: 667–688.Google Scholar
  80. Wetzel, R. G., 1984. Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull. mar. Sci. 35: 503–509.Google Scholar
  81. Whiting, G. J., H. N. McKellar, B. Kjerfve & J. D. Spurrier, 1987. Nitrogen exchange between a southeastern USA salt marsh ecosystem and the coastal ocean. Mar. Biol. 95: 173–182.CrossRefGoogle Scholar
  82. Wolanski, E., 1992. Hydrodynamics of mangrove swamps and their coastal waters. In Jaccarini, V. & E. Martens (eds.) The Ecology of Mangroves and Related Systems. Kluwer Academic Publishers, Belgium: 141–161.Google Scholar
  83. Wolanski, E., M. Jones & J. S. Bunt, 1980. Hydrodynamics of a tidal creek-mangrove swamp system. Aust. J. mar. Freshwat. Res. 31: 431–450.Google Scholar
  84. Wong, C. -H. 1984. Mangrove aquatic nutrients. In Ong, J. -E. & W. -K. Gong (eds.). Proceedings of the Workshop on Productivity of the Mangrove Ecosystem: Management Implications: 60–67.Google Scholar
  85. Woodruffe, C. D. 1985a. Studies on a mangrove basin, Tuff Crater, New Zealand. I. Mangrove biomass and production of detritus. Estuar. Coast. Shelf Sci. 20: 265–280.Google Scholar
  86. Woodruffe, C. D. 1985. Studies on a mangrove basin, Tuff Crater, New Zealand. II. The flux of organic and inorganic particulate matter. Estuar. Coast. Shelf Sci. 20: 447–462.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • S. Y. Lee
    • 1
  1. 1.Department of Zoology and the Swire Marine Laboratorythe University of Hong kongShekoHong Kong

Personalised recommendations