Plant Molecular Biology

, Volume 23, Issue 2, pp 365–376 | Cite as

Cloning and characterization of the lectin cDNA clones from onion, shallot and leek

  • Els J. M. Van Damme
  • Koen Smeets
  • Iris Engelborghs
  • Helen Aelbers
  • Jan Balzarini
  • Arpad Pusztai
  • Fred van Leuven
  • Irwin J. Goldstein
  • Willy J. Peumans
Research Articles


Characterization of the lectins from onion (Allium cepa), shallot (A. ascalonicum) and leek (A. porrum) has shown that these lectins differ from previously isolated Alliaceae lectins not only in their molecular structure but also in their ability to inhibit retrovirus infection of target cells.

cDNA libraries constructed from poly(A)-rich RNA isolated from young shoots of onion, shallot and leek were screened for lectin cDNA clones using colony hybridization. Sequence analysis of the lectin cDNA clones from these three species revealed a high degree of sequence similarity both at the nucleotide and at the amino acid level.

Apparently the onion, shallot and leek lectins are translated from mRNAs of ca. 800 nucleotides. The primary translation products are preproproteins (ca. 19 kDa) which are converted into the mature lectin polypeptides (12.5–13 kDa) after post-translational modifications.

Southern blot analysis of genomic DNA has shown that the lectins are most probably encoded by a family of closely related genes which is in good agreement with the sequence heterogeneity found between different lectin cDNA clones of one species.

Key words

Allium cDNA cloning lectin retrovirus inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balzarini J, Naessens L, Herdewijn P, Rosenberg I, Holy A, Pauwels R, Baba M, Johns DG, De Clercq E: Marked in vivo anti-retrovirus activity of PMEA [9-(2-phosphonylmethoxyethyl)adenine], a new selective anti-HIV agent. Proc Nat Acad Sci USA 86: 332–336 (1989).PubMedGoogle Scholar
  2. 2.
    Balzarini J, Naesens L, Slachmuylders J, Niphuis H, Rosenberg I, Holy A, Schellekens H, De Clercq E: 9-(2-phosphonylmethoxyethyl)adenine (PMEA) effectively inhibits retrovirus replication in vitro and simian immuno-deficiency virus infection in Rhesus monkeys. AIDS 5: 21–28 (1991).PubMedGoogle Scholar
  3. 3.
    Balzarini J, Schols D, Neyts J, Van Damme E, Peumans W, De Clercq E: α-(1–3)- and α-(1–6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicrob Agents Chemother 35: 410–416 (1991).PubMedGoogle Scholar
  4. 4.
    Balzarini J, Neyts J, Schols D, Hosoya M, Van Damme E, Peumans W, De Clercq E: The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n- specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral Res 18: 191–207 (1992).CrossRefPubMedGoogle Scholar
  5. 5.
    Cammue BPA, Peeters B, Peumans WJ: A new lectin from tulip (Tulipa) bulbs. Planta 169: 583–588 (1986).Google Scholar
  6. 6.
    Clavel F, Guétard D, Brun-Vézinet F, Chamaret S, Rey M-A, Santos-Ferreira MO, Laurent AG, Dauget C, Katlama C, Rouzioux C, Klatzmann D, Champalimaud JL, Montagnier L: Isolation of a new retrovirus from west-African patients with AIDS. Science 233: 343–346 (1986).PubMedGoogle Scholar
  7. 7.
    de Kochko A, Hamon S: A rapid and efficient method for the isolation of restrictable total DNA from plants of the genus Abelmoschus. Plant Mol Biol Rep 8: 3–7 (1990).Google Scholar
  8. 8.
    Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19–21 (1983).Google Scholar
  9. 9.
    Finkelstein RR, Crouch ML: Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol 81: 907–912 (1986).Google Scholar
  10. 10.
    Goldstein IJ, Poretz RD: Isolation, physicochemical characterization and carbohydrate-binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The Lectins: Properties, Functions and Applications in Biology and Medicine, pp. 33–248. Academic Press, New York (1986).Google Scholar
  11. 11.
    Haselbeck A, Schickaneder E, von der Eltz H, Hösel W: Structural characterization of glycoprotein carbohydrate chains by using digoxigenin-labelled lectins in blots. Anal Biochem 191: 25–30 (1990).PubMedGoogle Scholar
  12. 12.
    Kozak M: Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucl Acids Res 9: 5233–5252 (1981).PubMedGoogle Scholar
  13. 13.
    Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).PubMedGoogle Scholar
  14. 14.
    Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, (1982).Google Scholar
  15. 15.
    Mierendorf RC, Pfeffer D: Direct sequencing of denatured plasmid DNA. Meth Enzymol 152: 556–562 (1987).PubMedGoogle Scholar
  16. 16.
    Oda Y, Minami K: Isolation and characterization of a lectin from tulip bulbs, Tulipa gesneriana. Eur J Biochem 159: 239–245 (1986).PubMedGoogle Scholar
  17. 17.
    Peumans WJ, Allen AK, Cammue BPA: A new lectin from meadow saffron (Colchicum autumnale) Plant Physiol 82: 1036–1039 (1986).Google Scholar
  18. 18.
    Popovic M, Sarngadharan MG, Read E, Gallo RC: Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224: 497–500 (1984).PubMedGoogle Scholar
  19. 19.
    Pusztai A, Stewart JC: Molecular size, subunit structure and microheterogeneity of glycoprotein II from the seeds of kidney bean (Phaseolus vulgaris L.). Biochim Biophys Acta 623: 418–428 (1980).PubMedGoogle Scholar
  20. 20.
    Sandhu RD, Arora JS, Chopra SK, Pelia SS, Kamboy SS, Naidu YC, Nath I: New sources of lectins from Araceous indian plants. In: Kocourek J, Freed DLJ (eds) Lectins: Biology, Biochemistry, Clinical Biochemistry, Vol. 7, pp. 19–25. Sigma Chemical Co., St. Louis, MD (1990).Google Scholar
  21. 21.
    Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).PubMedGoogle Scholar
  22. 22.
    Shibuya N, Berry JE, Goldstein IJ: One-step purification of murine IgM and human α2-macroglobulin by affinity chromatography on immobilized snowdrop bulb lectin. Arch Biochem Biophys 267: 676–680 (1988).PubMedGoogle Scholar
  23. 23.
    Siflow CD, Hammett JR, Key JL: Sequence complexity of polyadenylated ribonucleic acid from soybean suspension culture cells. Biochemistry 189: 2725–2731 (1979).Google Scholar
  24. 24.
    Stinissen HM, Peumans WJ: Recent advances in biochemistry, cell biology, physiology, biosynthesis and genetics of Gramineae lectins. Biochem Physiol Pflanz 180: 85–106 (1985).Google Scholar
  25. 25.
    Van Damme EJM, Allen AK, Peumans WJ: Leaves of the orchid twayblade (Listera ovata) contain a mannose-specific lectin. Plant Physiol. 85: 566–569 (1987).Google Scholar
  26. 26.
    Van Damme EJM, Allen AK, Peumans WJ: Related mannose-specific lectins from different species of the family Amarylidaceae. Physiol Plant 73: 52–57 (1988).Google Scholar
  27. 27.
    Van Damme EJM, Goldstein IJ, Peumans WJ: Comparative study of related mannose-binding lectins from Amaryllidaceae and Alliaceae species. Phytochemistry 30: 509–514 (1991).CrossRefGoogle Scholar
  28. 28.
    Van Damme EJM, Kaku H, Perini F, Goldstein IJ, Peeters B, Yagi F, Decock B, Peumans WJ: Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur J Biochem 202: 23–30 (1991).PubMedGoogle Scholar
  29. 29.
    Van Damme EJM, Smeets K, Torrekens S, Van Leuven F, Goldstein IJ, Peumans WJ: The closely related homomeric and heterodimeric mannose-binding lectins from garlic are encoded by one-domain and two-domain lectin genes, respectively. Eur J Biochem 206: 413–420 (1992).PubMedGoogle Scholar
  30. 30.
    Van Damme EJM, Goldstein IJ, Vercammen G, Vuylsteke J, Peumans WJ: Lectins of members of the Amaryllidaceae are encoded by multigene families which show extensive homology. Physiol Plant 86: 245–252 (1992).CrossRefGoogle Scholar
  31. 31.
    von Heijne G: A method for predicting signal sequence cleavage sites. Nucl Acids Res 11: 4683–4690 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Els J. M. Van Damme
    • 1
  • Koen Smeets
    • 1
  • Iris Engelborghs
    • 1
  • Helen Aelbers
    • 1
  • Jan Balzarini
    • 2
  • Arpad Pusztai
    • 3
  • Fred van Leuven
    • 4
  • Irwin J. Goldstein
    • 5
  • Willy J. Peumans
    • 1
  1. 1.Laboratory for Phytopathology and Plant ProtectionKatholieke Universiteit LeuvenLeuven
  2. 2.Laboratory of Experimental Chemotherapy, Rega Institute for Medical ResearchKatholieke Universiteit LeuvenBelgium
  3. 3.The Rowette Research InstituteAberdeenUK
  4. 4.Center for Human GeneticsKatholieke Universiteit LeuvenBelgium
  5. 5.Department of Biological ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations