Advertisement

Plant Molecular Biology

, Volume 20, Issue 6, pp 1111–1119 | Cite as

Adenine depurination and inactivation of plant ribosomes by an antiviral protein of Mirabilis jalapa (MAP)

  • Jiro Kataoka
  • Noriyuki Habuka
  • Masashi Miyano
  • Chikara Masuta
  • Akira Koiwai
Research Articles

Abstract

Mirabilis antiviral protein (MAP) is a single-chain ribosome-inactivating protein (RIP) isolated from Mirabilis jalapa L. It depurinates the 28S-like rRNAs of prokaryotes and eukaryotes. A specific modification in the 25S rRNA of M. jalapa was found to occur during isolation of ribosomes by polyacrylamide/agarose composite gel electrophoresis. Primer extension analysis revealed the modification site to be at the adenine residue corresponding to A4324 in rat 28S rRNA. The amount of endogenous MAP seemed to be sufficient to inactivate most of the homologous ribosomes. The adenine of wheat ribosomes was also found to be removed to some extent by an endogenous RIP (tritin). However, the amount of endogenous tritin seemed to be insufficient for quantitative depurination of the homologous ribosomes.

Endogenous MAP could shut down the protein synthesis of its own cells when it spreads into the cytoplasm through breaks of the cells. Therefore, we speculate that MAP is a defensive agent to induce viral resistance through the suicide of its own cells.

Key words

Mirabilis antiviral protein ribosome-inactivating protein tritin viral resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbieri L, Stirpe F: Ribosome-inactivating proteins from plants: properties and possible uses. Cancer Surv 1: 489–520 (1982).Google Scholar
  2. 2.
    Barker RF, Harberd NP, Jarvis MG, Flavell RB: Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J Mol Biol 201: 1–17 (1988).PubMedGoogle Scholar
  3. 3.
    Battelli MG, Lorenzoni E, Stirpe F: Differential effect of ribosome-inactivating proteins on plant ribosome activity and plant cells growth. J. Exp. Bot 35: 882–889 (1984).Google Scholar
  4. 4.
    Brosius J, Dull TJ, Noller HF: Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 77: 201–204 (1980).PubMedGoogle Scholar
  5. 5.
    Chan Y-L, Endo Y, Wool IG: The sequence of the nucleotides at the α-sarcin cleavage site in rat 28S ribosomal ribonucleic acid. J Biol Chem 258: 12768–12770 (1983).PubMedGoogle Scholar
  6. 6.
    Chan Y-L, Olivera J, Wool IG: The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucl Acids Res 11: 7819–7831 (1983).PubMedGoogle Scholar
  7. 7.
    Chow TP, Feldman RA, Lovett M, Piatak M: Isolation and DNA sequencing of a gene encoding α-trichosanthin, a type I ribosome-inactivating protein. J Biol Chem 265: 8670–8674 (1990).PubMedGoogle Scholar
  8. 8.
    Coleman WH, Roberts WK: Factor requirements for the tritin inactivation of animal cell ribosomes. Biochim Biophys Acta 654: 57–66 (1981).PubMedGoogle Scholar
  9. 9.
    Endo Y, Tsurugi K: The RNA N-glycosidase activity of ricin A-chain. J Biol Chem 263: 8735–8739 (1988).PubMedGoogle Scholar
  10. 10.
    Endo Y, Mitsui K, Motizuki M, Tsurugi K: The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. J Biol Chem 262: 5908–5912 (1987).PubMedGoogle Scholar
  11. 11.
    Georgiev OI, Nikolaev N, Hadjiolov AA, Skryabin KG, Zakharyev VM, Bayev AA: The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25S rRNA gene from Saccharomyces cerevisiae. Nucl Acids Res 9: 6953–6958 (1981).PubMedGoogle Scholar
  12. 12.
    Glisin V, Crkvenjakov R, Byus C: Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13: 2633–2637 (1974).PubMedGoogle Scholar
  13. 13.
    Habuka N, Akiyama K, Tsuge H, Miyano M, Matsumoto T, Noma M: Expression and secretion of Mirabilis antiviral protein in Escherichia coli and its inhibition of in vitro eukaryotic and prokaryotic protein synthesis. J Biol Chem 265: 10988–10992 (1990).PubMedGoogle Scholar
  14. 14.
    Habuka N, Miyano M, Kataoka J, Noma M: Escherichia coli ribosome is inactivated by Mirabilis antiviral protein which cleaves the N-glycosidic bond at the A2660 of the 23S ribosomal RNA. J Mol Biol 221: 737–743 (1991).PubMedGoogle Scholar
  15. 15.
    Halling KC, Halling AC, Murray EE, Ladin BF, Houston KC, Weaver RF: Genomic cloning and characterization of a ricin gene from Ricinus communis. Nucl Acids Res 13: 8019–8033 (1985).PubMedGoogle Scholar
  16. 16.
    Hartley MR, Legname G, Osborn R, Chen Z, Load JM: Single-chain ribosome inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett 290: 65–68 (1991).PubMedGoogle Scholar
  17. 17.
    Ho WKK, Liu SC, Shaw PC, Yeung HW, Ng TB, Chan WY: Cloning of the cDNA of α-momorcharin: a ribosome inactivating protein. Biochim Biophys Acta 1088: 311–314 (1991).PubMedGoogle Scholar
  18. 18.
    Irvin JD: Purification and partial characterization of the antiviral protein Phytolacca americana which inhibits eukaryotic protein synthesis. Arch Biochem Biophys 169: 522–528 (1975).PubMedGoogle Scholar
  19. 19.
    Jackson AO, Larkins BA: Influence of ionic strength, pH, and chelation of divalent metals on isolation of polyribosomes from tobacco leaves. Plant Physiol 57: 5–10 (1976).Google Scholar
  20. 20.
    Kataoka J, Habuka N, Miyano M, Takanami Y, Koiwai A: DNA sequence of Mirabilis antiviral protein (MAP), a ribosome-inactivating protein with an antiviral property, from Mirabilis jalapa L. and its expression in Escherichia coli. J Biol Chem 266: 8426–8430 (1991).PubMedGoogle Scholar
  21. 21.
    Kolosha VO, Kryukov VM, Fodor I: Sequence analysis of Citrus limon DNA coding for 26S rRNA-evidence of heterogeneity in the 3′-region. FEBS Lett 197: 89–92 (1986).CrossRefGoogle Scholar
  22. 22.
    Kubo S, Ikeda T, Imaizumi S, Takanami Y, Mikami Y: A potent plant virus inhibitor found in Mirabilis jalapa L. Ann Phytopathol Soc Jpn 56: 481–487 (1990).Google Scholar
  23. 23.
    Larkins BA, Davies E: Polyribosomes from peas. Plant Physiol 55: 749–756 (1975).Google Scholar
  24. 24.
    Legname G, Bellosta P, Gromo G, Modena D, Keen JN, Roberts LM, Lord JM: Nucleotide sequence of cDNA coding for dianthin 30, a ribosome inactivating protein from Dianthus caryophyllus. Biochim Biophys Acta 1090: 119–122 (1991).PubMedGoogle Scholar
  25. 25.
    Maraganore JM, Joseph M, Bailey MC: Purification and characterization of trichosanthin. J Biol Chem 258: 11628–11633 (1987).Google Scholar
  26. 26.
    Olsnes S, Pihl A: Toxic lectins and related proteins. In: Cohen P, Heyningen S (eds) The Molecular Action of Toxins and Viruses. Elsevier, New York (1982).Google Scholar
  27. 27.
    Owens RA, Bruening G, Shepherd RJ: A possible mechanism for the inhibition of plant viruses by a peptide from Phytolacca americana. Virology 56: 390–393 (1973).CrossRefPubMedGoogle Scholar
  28. 28.
    Peacock AC, Dingman CW: Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry 7: 668–674 (1968).PubMedGoogle Scholar
  29. 29.
    Peattie DA: Direct chemical method for sequencing RNA. Proc Natl Acad Sci USA 76: 1760–1764 (1979).PubMedGoogle Scholar
  30. 30.
    Ready M, Wilson K, Piatak M, Robertus JD: Ricin-like toxins are evolutionarily related to single-chain ribosome-inhibiting proteins from Phytolacca. J Biol Chem 259: 15252–15256 (1984).PubMedGoogle Scholar
  31. 31.
    Ready MP, Brown DT, Robertus JD: Extracellular localization of pokeweed antiviral protein. Proc Natl Acad Sci USA 83: 5053–5056 (1986).PubMedGoogle Scholar
  32. 32.
    Stirpe F, Bailey S, Miller SP, Bodley JM: Modification of ribosomal RNA by ribosome-inactivating proteins from plants. Nucl Acids Res 16: 1349–1357 (1988).PubMedGoogle Scholar
  33. 33.
    Stirpe F, Hughes RC: Specificity of ribosome-inactivating proteins with RNA N-glycosidase activity. Biochem J 262: 1001–1002 (1989).Google Scholar
  34. 34.
    Takaiwa F, Oono K, Iida Y, Sugiura M: The complete nucleotide sequence of a rice 25S rRNA gene. Gene 37: 255–259 (1985).CrossRefPubMedGoogle Scholar
  35. 35.
    Takanami Y, Kuwata S, Ikeda T, Kubo S: Purification and characterization of the anti-plant viral protein from Mirabilis jalapa L. Ann Phytopathol Soc Jpn 56: 488–494 (1990).Google Scholar
  36. 36.
    Taylor BE, Irvin JD: Depurination of plant ribosomes by pokeweed antiviral protein. FEBS Lett 273: 144–146 (1990).CrossRefPubMedGoogle Scholar
  37. 37.
    Wyatt SD, Shepherd RJ: Isolation and characterization of a virus inhibitor from Phytolacca americana. Phytopathology 59: 1787–1794 (1969).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Jiro Kataoka
    • 1
  • Noriyuki Habuka
    • 1
  • Masashi Miyano
    • 1
  • Chikara Masuta
    • 1
  • Akira Koiwai
    • 1
  1. 1.Life Science Research LaboratoryJapan Tobacco Inc.Yokohama, KanagawaJapan

Personalised recommendations