Skip to main content
Log in

Restriction fragment length polymorphisms and genetic improvement of agricultural species

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Evidence is accumulating demonstrating the ubiquity and abundance of a new class of genetic markers, restriction fragment length polymorphisms (RFLPs). These markers should allow the genetic map of agricultural species to be saturated in the near future. This holds great promise for useful applications, including: protection of breeder's rights, and more effective means for the characterization and manipulation of individual genetic loci affecting traits of economic importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, R. W., 1960. Principles of plant breeding. John Wiley & Sons, New York. 485 pp.

    Google Scholar 

  • Antonarakis, S. E., H. H., KazazianJr. & S. H., Orkin, 1985. DNA polymorphisms and molecular pathology of the human globin gene clusters. Hum. Genet. 69: 1–14.

    PubMed  Google Scholar 

  • Aquadro, C. F., nR. M., Jennings, M. M., Bland, C. C., Laurie-Ahlberg & C. H., Langley, 1984. Patterns of naturally occurring DNA sequence variation, activity variation and linkage disequilibrium in the dopa decarboxylase region of Drosophila melanogaster. Genetics 107: s3.

  • Barton, J. H., 1982. The international breeder's rights system and crop plant innovation. Science 216: 1071–1075.

    Google Scholar 

  • Beckett, J. B., 1978. B-A translocations in maize: 1. Use in locating genes by chromosome arms. J. Hered. 69: 27–36.

    Google Scholar 

  • Beckmann, J. S., Y. Kashi, E. M. Hallerman, A. Naveh & M. Soller, 1986. Restriction fragment length polymorphism among Israeli Holstein-Friesian dairy bulls. Animal Genetics 17: in press.

  • Beckmann, J. S. & M., Soller, 1983. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor. appl. Genet. 67: 35–43.

    Article  Google Scholar 

  • Beckmann, J. S. & M. Soller, 1985. Insertional mutagenesis: a new genetic engineering tool in plants. Israel J. Botany. (in press).

  • Bennett, K. L., P. A., Lalley, R. K., Barth & N. D., Hastie, 1982. Mapping the structural genes coding for the major urinary proteins in the mouse: Combined use of recombinant inbred strains and somatic cell hybrids. Proc. Natl. Acad. Sci. U.S.A. 79: 1220–1224.

    PubMed  Google Scholar 

  • Bernatzky, R., S. D. Tanksley & C. E. Vallejos, 1984. Copy number and chromosomal location of actin-related sequences in tomato. Genetics 107: s11.

  • Bevan, M. W. & M.-D., Chilton, 1983. T-DNA of the Agrobacterium Ti and Ri plasmids. An. Rev. Genet. 16: 357–384.

    Article  Google Scholar 

  • Blatt, C., K., Mileham, M., Haas, M. N., Nesbitt, M. E., Harper & M. I., Simon, 1983. Chromosomal mapping of the mink cell focus-inducing and xenotropic env gene family in the mouse. Proc. Natl. Acad. Sci. USA 80: 6298–6302.

    PubMed  Google Scholar 

  • Blatt, C., M. E., Harper, G., Franchini, M. N., Nesbitt & M. I., Simon, 1984. Chromosomal mapping of murine c-fes and c-src genes. Molec. cell. Biol. 4: 978–981.

    PubMed  Google Scholar 

  • Botstein, D., R. L., White, M., Skolnick & R. W., Davis, 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. hum. Genet. 32: 314–331.

    PubMed  Google Scholar 

  • Burr, B., S. V., Evola, F., Burr & J. S., Beckmann, 1983. The application of restriction fragment length polymorphism to plant breeding. In: J., Setlow & A., Hollaender (Eds), Genetic engineering 5. Plenum, New York, NY. pp. 45–59.

    Google Scholar 

  • Brown, A. H. D., 1979. Enzyme polymorphism in plant populations. Theor. popul. Biol. 15: 1–43.

    Google Scholar 

  • Calos, M. P. & J. H., Miller, 1982. Transposable elements. Cell 20: 579–595.

    Article  Google Scholar 

  • Chardon, P., M., Vaiman, M., Kirszenbaum, C., Geffrotin, C., Renard & D., Cohen, 1985. Restriction fragment length polymorphism of the major histocompatibility complex of the pig. Immunogenetics 21: 161–171.

    PubMed  Google Scholar 

  • Cohen, J. C. & H. E., Varmus, 1979. Endogenous mammary tumour virus DNA varies among wild mice and segregates during inbreeding. Nature (London) 278: 418–422.

    Google Scholar 

  • Crittenden, L. B., 1981. Exogeneous and endogenous leukosis virus genes: a review. Avian Pathology 10: 101 (1981).

    Google Scholar 

  • Davis, R. L. & N., Davidson, 1984. Isolation of the Drosophila melanogaster Dunce Chromosomal region and recombinational mapping of Dunce sequences with restriction site polymorphisms as genetic markers. Molec. cell. Biol. 4: 358–367.

    PubMed  Google Scholar 

  • D'Eustachio, P. & F. H., Ruddle, 1983. Somatic cell genetics and gene families. Science 220: 919–924.

    PubMed  Google Scholar 

  • Fedoroff, N., 1983. Controlling elements in maize. In: J. Shapiro (Ed.), Mobile genetic elements. p. 1–63.

  • Forster, A. C., J. L., McInnes, D. C., Skingle & R. H., Symons, 1985. Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucl. acid. Res. 13: 745–761.

    Google Scholar 

  • Garcia-Olmedo, F., P., Carbonero & B. L., Jones, 1982. Chromosomal location of genes that control wheat in endosperm proteins. Adv. Cereal Sci. Technol. 5: 1–47.

    Google Scholar 

  • Geldermann, H., U., Pieper & B., Roth, 1985. Effects of marked chromosome section on milk performance in cattle. Animal Blood Groups and Biochemical Genetics 16, Suppl. 1: 90.

    Google Scholar 

  • Gordon, J. W. & F. H., Ruddle, 1981. Injection and stable germline transmission of genes injected into mouse pronuclei. Science 214: 1244–1246.

    PubMed  Google Scholar 

  • Grodzicker, T., J., Williams, P., Sharp & J., Sambrook, 1974. Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harbor Symp. Quant. Biol. 39: 439–446.

    Google Scholar 

  • Hallerman, E. M., M. Soller & J. S. Beckmann. Statistical power of the North Carolina Experiment III design in determining the likelihood of success of pedigree breeding programs in selfing plants. Submitted.

  • Helentjaris, T. & R., Gesteland, 1983. Evaluation of random cDNA clones as probes for human restriction fragment length polymorphisms. J. mol. appl. Genet. 2: 237–247.

    PubMed  Google Scholar 

  • Hooykaas, P. J. J. & R. A., Schilperoort, 1984. The molecular genetics of crown gall tumorigenesis. Adv. Genet. 22: 201–268.

    Google Scholar 

  • Jeffreys, A. J., 1979. DNA sequence variants in the Gγ-, Aγ-, δ- and β-globin genes of man. Cell 18: 1–10.

    Article  PubMed  Google Scholar 

  • Jeffreys, A. J., Wilson & S. L., Thein, 1985. Hypervariable ‘minisatellite’ regions in human DNA. Nature (London) 314: 67–73.

    Google Scholar 

  • Kan, Y. W. & A. M., Dozy, 1978. Antenatal diagnosis of sickle-cell anaemia by DNA analysis of amnioticfluid cells. Lancet 2: 910–912.

    Article  PubMed  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    PubMed  Google Scholar 

  • Kurnit, D. M., S., Orkin & R., White, 1982. Prenatal analysis of human DNA-sequence variation. Methods Cell Biol. 26: 311–330.

    PubMed  Google Scholar 

  • Ladin, B., J. J., Doyle & R. N., Beachy, 1984. Molecular characterization of a deletion mutation affecting the α′-subunit of β-conglycinin of Soybean. J. mol. appl. Genet. 2: 372–380.

    PubMed  Google Scholar 

  • Lai, E. C., S. L. C., Woo, A., Dugaiczyk & B. W., O'Malley, 1979. The ovalbumin gene: alleles created by mutations in the intervening sequences of the natural gene. Cell 16: 201–211.

    Article  PubMed  Google Scholar 

  • Law, C. N. & A. J. Worland, 1973. Aneuploidy in wheat and its uses in genetic analysis. In: Plant Breeding Institute Annual Report (Plant Breeding Inst. Cambridge, 1972): 25–65.

  • Longwell, J. H.Jr. & E. R., Sears, 1963. Nullisomics in tetraploid wheat. Am. Natur. 97: 401–403.

    Article  Google Scholar 

  • Martens, G. J. M. & E., Herbert, 1984. Polymorphism and absence of Leu-enkephalin sequences in proenkephalin genes in Xenopus laevis. Nature (London) 310: 251–254.

    Google Scholar 

  • McClintock, B., 1984. The significance of responses of the genome to challenge. Science 226: 792–801.

    Google Scholar 

  • Murray, J. C., K. A., Mills, C. M., Demopulos, S., Hornung, & A. G., Motulsky, 1984. Linkage disequilibrium and evolutionary relationship of DNA variants (restriction enzyme fragment length polymorphisms) at the serum albumin locus. Proc. Natl. Acad. Sci. USA 81: 3486–3490.

    PubMed  Google Scholar 

  • Neuffer, M. G. & E. H., Coe, 1974. Corn (maize). In: R. C., King (Ed.), Handbook of genetics 2. Plenum Press, New York. pp. 3–30.

    Google Scholar 

  • Nevo, E., D., Zohary, A. H. D., Brown & M., Haber, 1979. Genetic diversity and environmental associations of wild barley Hordeum spontaneum in Israel. Evolution 33: 815–833.

    Google Scholar 

  • Nilan, R. A., 1974. Barley (Hordeum vulgare). In: R. C., King (Ed.), Handbook of genetics 2. (Plenum Press, New York.) pp. 93–110.

    Google Scholar 

  • Orton, T. J., 1983. Experimental approaches to the study of somaclonal variation. Plant mol. Biol. Reporter 1: 67–76.

    Google Scholar 

  • Palmiter, R. D., G., Norstedt, R. E., Gelinas, R. E., Hammer & R. L., Brinster, 1983. Metallothionein-human GH fusion genes stimulate growth of mice. Science 222: 809–814.

    PubMed  Google Scholar 

  • Palmiter, R. D., T. M., Wilkie, H. Y., Chen & R. L., Brinster, 1984. Transmission distortion and mosaicism in an unusual transgenic mouse pedigree. Cell 36: 869–877.

    Article  PubMed  Google Scholar 

  • Patterson, F. L., J. F., Schafer & R. M., Caldwell, 1968. Effect of selected linkage blocks on yield and yield components in wheat. In: K. W., Finlay & K. W., Shepherd (Eds.), Third Int. Wheat Genetics Symp. Aust Acad Sci, Butterworths, Canberra. Plenum Press, New York, NY. pp. 88–92.

    Google Scholar 

  • Petes, T. K. & D., Botstein, 1977. Simple mendelian inheritance of the reiterated ribosomal DNA of yeast. Proc. Natl. Acad. Sci. U.S.A. 74: 5091–5095.

    PubMed  Google Scholar 

  • Polans, N. O., N. F. Weeden & W. F. Thompson, 1984. Variation in pea restriction endonuclease fragment patterns. Genetics 107: s83 (1984).

  • Renz, M. & C., Kurz, 1984. A colorimetric method for DNA hybridization. Nucl. acid Res. 12: 3435–3444.

    Google Scholar 

  • Rick, C. M., 1974. The tomato. In: R. C., King (Ed.), Handbook of genetics 2. Plenum Press, New York. pp. 247–280.

    Google Scholar 

  • Rick, C. M. & J. F., Fobes, 1975. Allozyme variation in cultivated tomato and closely related species. Bull. of the Torrey Botanical Club 102: 376–384.

    Google Scholar 

  • Rivin, C. J., E. A., Zimmer, C. A., Cullis, V., Walbot, T., Huynh & R. W., Davis, 1983. Evaluation of genomic variability at the nucleic acid level. Plant mol. Biol. Reporter 1: 9–16.

    Google Scholar 

  • Roman, H. & A. J., Ullstrup, 1951. The use of A-B translocations to locate genes in maize. Agron. J. 43: 450–454.

    Google Scholar 

  • Rose, A. M., D. L., Baillie, E. P. M., Candido, K. A., Beckenback & D., Nelson, 1982. The linkage mapping of cloned restriction fragment length difference in Caenorabditis elegans. Molec. gen. Genet. 188: 286–291.

    Article  PubMed  Google Scholar 

  • Schnieke, A., K., Harbers & R., Jaenish, 1983. Embryonic lethal mutation in mice induced by retrovirus insertion in the al (I) collagen gene. Nature (London) 304: 315–320.

    Google Scholar 

  • Sears, E. R., 1953. Nullisomic analysis in common wheat. Am. Natur. 87: 245–252.

    Article  Google Scholar 

  • Sears, E. R., 1962. The use of telocentric chromosomes in linkage mapping. Genetics 47: 983 (Abstract).

    Google Scholar 

  • Sears, E. R., 1954. The aneuploids of common wheat. Mo. Agric. Exp. Stn. Res. Bull. 572: 1–59.

    Google Scholar 

  • Shepherd, H. S. & J. K. Emerson, 1984. Restriction fragment polymorphism in chromosomally heterozygous populations of Calycadenia ciliosa (Compositae). Genetics 107: s98.

  • Simmonds, N. W., 1979. Principles of crop improvement. Longman, London. 408 pp.

    Google Scholar 

  • Skolnick, M. H., H. F., Willard & L. A., Menlove, 1984. Report of the committee on human gene mapping by recombinant DNA techniques. Cytogenet. Cell Genetics 37: 210–273.

    Google Scholar 

  • Soller, M., 1978. The use of loci associated with quantitative traits in dairy cattle improvement. Anim Prod. 27: 133 (1978).

    Google Scholar 

  • Soller, M. & J. S., Beckmann, 1982. Restriction fragment length polymorphisms and genetic improvement. Proc. 2nd World Congress Genetics Applied to Livestock Production 6: 396–404.

    Google Scholar 

  • Soller, M. & J. S., Beckmann, 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. appl. Genet. 67: 25–33.

    Article  Google Scholar 

  • Soller, M. & J. S., Beckmann, 1985. Restriction fragment length polymorphisms and animal genetic improvement. In: J. S. F., Baker (Ed.), Reviews in rural sciences 6. Univ. New England, Armidale, Australia: 10–18.

    Google Scholar 

  • Soller, M., T., Brody & A., Genizi, 1979. The expected distribution of markerlinked quantitative effects in crosses between inbred lines. Heredity 43: 179–190.

    Google Scholar 

  • Soller, M. & A., Genizi, 1978. The efficiency of experimental designs for the detection of linkage between a marker locus and a locus affecting a quantitative trait in segregating populations. Biometrics 34: 47–55.

    Google Scholar 

  • Soller, M., A., Genizi & T., Brody, 1976. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor. appl. Genet. 47: 35–39.

    Article  Google Scholar 

  • Soller, M. & J., Plotkin-Hazan, 1979. The use of marker alleles for the introgression of linked quantitative alleles. Theor. appl. Genet. 51: 133–137.

    Google Scholar 

  • Solomon, E. & W. F., Bodmer, 1978. Evolution of sickle variant gene. Lancet 1: 923.

    Google Scholar 

  • Southern, E. M., 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. mol. Biol. 98: 503–517.

    PubMed  Google Scholar 

  • Spickett, S. G. & J. M., Thoday, 1966. Regular responses to selection. 3. Interaction between located polygenes. Genet. Res. 7: 96–121.

    PubMed  Google Scholar 

  • Spradling, A. C. & G. M., Rubin, 1983. The effect of chromosomal position on the expression of the Drosophila Xanthine dehydrogenase gene. Cell 34: 47–57.

    Article  PubMed  Google Scholar 

  • Tanksley, S. D., H., Medina-Filho & C. M., Rick, 1981. The effect of isozyme selection on metric characters in an interspecific backcross of tomato-basis of an early screening procedure. Theor. appl. Genet. 60: 291–296.

    Article  Google Scholar 

  • Tanksley, S. D., H., Medina-Filho & C. M., Rick, 1982. Use of naturally-occuring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49: 11–25.

    Google Scholar 

  • Thoday, J. M., 1961. Location of polygenes. Nature (London) 191: 368–370.

    Google Scholar 

  • Ursic, D., J. L., Slightom & J. D., Kemp, 1983. Agrobacterium tumefaciens T-DNA integrates into multiple sites of the sunflower crown gall genome. Mol. gen. Genet. 190: 494–503.

    Article  Google Scholar 

  • Weller, J., 1983. Genetic analysis of quantitative traits in Lycopersicon (tomato) by means of genetic markers, including a comparison of an improved cultivar and a wild variety (in Hebrew, English summary). Ph. D. thesis The Hebrew University of Jerusalem, Israel.

  • Weller, J. & M., Soller, 1981. Methods for the production of multi-marker strains. Theor. appl. Genet. 59: 73–77.

    Article  Google Scholar 

  • Wyman, A. R. & R., White, 1980. A highly polymorphic locus in human DNA. Proc. Natl. Acad. Sci. U.S.A. 77: 6754–6758.

    PubMed  Google Scholar 

  • Zabeau, M. & R. J., Roberts, 1979. The role of restriction endonucleases in molecular genetics. In: Molecular genetics III: 1–63 (Ed. J. H., Taylor; Academic Press, New York, NY).

    Google Scholar 

  • Zhuschenko, A. M., A. P., Samovol, A. B., Korol & A. B., Andryuschenko, 1979. Linkage between loci of quantitative characters and marker loci. 2. Influence of three tomato chromosomes on variability of five quantitative characters in backcross progenies. Translated from Genetika 15: 672–683 (in: Soviet Genetics).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No 768-E, 1985 series. Supported by the U.S.-Israel Agricultural Research and Development Fund (BARD).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckmann, J.S., Soller, M. Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica 35, 111–124 (1986). https://doi.org/10.1007/BF00028548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028548

Index words

Navigation