Hydrobiologia

, Volume 225, Issue 1, pp 229–243 | Cite as

Ecological genetics of Norwegian Daphnia. II. Distribution of Daphnia longispina genotypes in relation to short-wave radiation and water colour

  • Anders Hobæk
  • Hans Georg Wolf
Article

Abstract

In the mountain range of South Norway, transparent and melanic members of the Daphnia longispina complex occur. Melanic populations inhabit clearwater lakes and ponds, while transparent populations are found in ponds with slightly humic water. Mixed populations have not been detected. The distribution patterns of the two morphs are related to ambient levels of short-wave radiation, and the light absorptive properties of the inhabited waters. The pigment present is probably melanin, which is deposited in the dorsally directed parts of the carapace, head shield and antennae. Allozyme studies indicate that these distinct morphs are only remotely related, the alpine transparent group being closer to lowland, likewise transparent, populations. A melanic population found at Svalbard is closely related to the melanic mainland populations. Clonal diversity in ponds and shallow lakes is very low, in contrast to populations of deeper lakes.

Key words

Daphnia longispina ultraviolet radiation pigments photoprotection genetics clonal diversity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, F. J., M. L. Tracey, L. C. Barr, J. F. McDonald & S. Perez-Salas, 1974. Genetic variation in natural populations of five Drosophila species and the hypothesis of the selective neutrality of protein polymorphism. Genetics 77: 343–384.Google Scholar
  2. Beaton, M. J. & P. D. N. Hebert, 1989. Geographical parthenogenesis and polyploidy in Daphnia pulex. Am. Nat. 132: 837–845.Google Scholar
  3. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierik, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.Google Scholar
  4. Brehm, V., 1938. Die Rotfarbung von Hochgebirgseeorganismen. Biol. Rev. 13: 307–318.Google Scholar
  5. Britton, G., 1983. The biochemistry of natural pigments. (Cambridge texts in chemistry and biochemistry). Cambridge University Press.Google Scholar
  6. Brooks, J. L., 1957. The systematics of North American Daphnia. Mem. Connect. Acad. Arts. Sci. 13: 1–180.Google Scholar
  7. Dodson, S. I., 1984. Predation of Heterocope septentrionalis on two species of Daphnia: Morphological defenses and their cost. Ecology 65: 1249–1257.Google Scholar
  8. Ekman, S., 1904. Die Phyllopoden, Cladoceren und freischwebenden Copepoden der nordschwedischen Hochgebirge. Ein Beitrag zur Tiergeographie, Biologie und Systematik der arktischen, nordschwedischen und mitteleuropäischen Arten. Zool. Jb. Syst. Ökol. Geogr. Tiere 21: 1–170.Google Scholar
  9. Emery, C. J., 1984. The ecological impact of near ultraviolet radiation on Daphnia pulex. MSc thesis, University of Windsor, Ontario.Google Scholar
  10. Felsenstein, J., 1987. PHYLIP (Phylogeny Inference Package) version 3.0 Manual. Univ. of Washington.Google Scholar
  11. Ferrari, D. C. & P. D. N. Hebert, 1982. The induction of sexual reproduction in Daphnia magna: genetic differences between arctic and temperate populations. Can J. Zool. 60: 2143–2148.Google Scholar
  12. Flößner, D., 1972. Krebstiere, Crustacea. Kiemen- und Blattfüßer, Branchiopoda; Fischläuse, Branchiura. Die Tierwelt Deutschlands, 60. Teil: 1–501. G. Fischer, Jena.Google Scholar
  13. Flößner, D., 1986. Beitrag zur Kenntnis der Branchiopoden- und Copepodenfauna der Mongolei. Mitt. Zool. Mus. Berl. 62: 3–40.Google Scholar
  14. Frey, D. G., 1982. G. O. Sars and the Norwegian Cladocera: a continuing frustration. Hydrobiologia 96: 267–293.Google Scholar
  15. Hairston, N. G., Jr., 1976. Photoprotection by carotenoid pigments in the copepod Diaptomus nevadensis. Proc. natn. Acad. Sci. 73: 971–974.Google Scholar
  16. Hairston, N. G., Jr., 1978. Carotenoid photoprotection in Diaptomus kenai. Verh. int. Ver. Limnol. 20: 2541–2545.Google Scholar
  17. Hairston, N. G., Jr., 1979. The adaptive significance of colour polymorphism in two species of Diaptomus (Copepoda). Limnol. Oceanogr. 24: 38–44.Google Scholar
  18. Hebert, P. D. N., 1974. Enzyme variability in natural populations of Daphnia magna. III. Genotypic frequencies in intermittent populations. Genetics 77: 335–341.Google Scholar
  19. Hebert, P. D. N., 1987. Genotypic characteristics of the Cladocera. Hydrobiologia 145: 183–193.Google Scholar
  20. Hebert, P. D. N. & T. J. Crease, 1983. Heterosis in Daphnia: a reassessment. Am. Nat. 119: 427–434.Google Scholar
  21. Hebert, P. D. N. & J. M. Loaring, 1980. Selective predation and the species composition of arctic ponds. Can. J. Zool. 58: 422–426.Google Scholar
  22. Hebert, P. D. N. & D. B. McWalter, 1983. Cuticular pigmentation in arctic Daphnia: adaptive diversification of asexual lineages. Am. Nat. 122: 286–291.Google Scholar
  23. Hebert, P. D. N., R. D. Ward & L. J. Weider, 1988. Clonal-diversity patterns and breeding system variation in Daphnia pulex, an asexual-sexual complex. Evolution 42: 147–159.Google Scholar
  24. Herring, P. J., 1965. Blue pigment of a surface-living oceanic copepod. Nature 205: 103–104.Google Scholar
  25. Hobæk, A. & G. G. Raddum, 1980. Zooplankton communities in acidified lakes in South Norway. SNSF project, IR 75/80. Oslo-Aas, Norway: 1–132.Google Scholar
  26. Hrbáček, J., 1987. Systematics and biogeography of Daphnia species in the northern temperate region. Mem. Ins. ital. Idrobiol. 45: 37–76.Google Scholar
  27. Hrbáček, J., V. Korínek & D. G. Frey, 1978. Cladocera. In J. Illies (ed.), Limnofauna Europaea (2. ed.). G. Fisher Verlag, Stuttgart: 189–195.Google Scholar
  28. Innes, D. J. & P. D. N. Hebert, 1988. The origin and genetic basis of obligate parthenogenesis in Daphnia pulex. Evolution 42: 1024–1035.Google Scholar
  29. Korpelainen, H., 1986. The effect of temperature and photoperiod on life history parameters of Daphnia magna (Crustacea: Cladocera). Freshw. Biol. 16: 615–620.Google Scholar
  30. Lilljeborg, W., 1887. Contributions to the natural history of the Commander Islands. No. 9. On the Entomostraca collected by Mr. Leonhard Stejneger, on Bering Island, 1882–'83. Proc. U.S. Nat. Mus. 10: 154–156.Google Scholar
  31. Lilljeborg, W., 1901. Cladocera Sueciae. Nova Acta Soc. Reg. Sc. Ups. Ser. 3 Vol. 19. 701 pp.Google Scholar
  32. Luecke, C. & W. J. O'Brien, 1981. Phototoxicity and fish predation: Selective factors in color morphs of Heterocope. Limnol. Oceanogr. 26: 454–460.Google Scholar
  33. Margaritora, F. & O. Ferrara, 1979. Contributo alla conoscenza di Daphnia rosea Sars (Cladocera Daphnidae) in Italia: confronti e differenze con D. longispina O.F. Müller e D. zschokkei Stingelin. Boll. Mus. Civ. St. Nat. Verona 6: 127–138.Google Scholar
  34. Nauwerck, A., 1978. Bosmina obtusirostris im Latnjajaure. Arch. Hydrobiol. 82: 387–418.Google Scholar
  35. Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.Google Scholar
  36. Pejler, B., 1973. On the taxonomy of limnoplanktic Daphnia species in Northern Sweden. Zoon 1: 23–27.Google Scholar
  37. Sars, G. O., 1890. Oversigt af Norges Crustaceer med foreløbige Bemærkninger over de nye eller mindre bekjendte Arter. II. (Branchiopoda-Ostracoda-Cirripedia). Forh. Vidensk.-Selsk. Christiania 1890 No. 1: 1–80.Google Scholar
  38. Siebeck, O., 1978a. Ultraviolet tolerance of planktonic crustaceans. Ver. int. Ver. Limnol. 20: 2469–2473.Google Scholar
  39. Siebeck, O., 1978b. UV-toleranz und Photoreaktivierung bei Daphnien aus biotopen verschiedener Hohenregion. Naturwissenschaften 65: 390–391.Google Scholar
  40. Stingelin, T., 1894. Über zwei neue Daphnien aus dem schweizerischen Hochgebirge. Zool. Anz. 17: 378–380.Google Scholar
  41. Thomasson, K., 1956. Reflections on arctic and alpine lakes. Oikos 7: 117–143.Google Scholar
  42. Weider, L. J., 1989. Spatial heterogeneity and clonal structures in arctic populations of apomictic Daphnia. Ecology 70: 1405–1413.Google Scholar
  43. Weider, L. J., M. J. Beaton & P. D. N. Hebert, 1987. Clonal diversity in high-arctic populations of Daphnia pulex, a polyploid apomictic complex. Evolution 41: 1335–1346.Google Scholar
  44. Weider, L. J. & W. Lampert, 1985. Differential response of Daphnia genotypes to oxygen stress: respiration rates, hemoglobin contents and low oxygen tolerance. Oecologia 65: 487–491.Google Scholar
  45. Wolf, H. G., 1982. A comparison of different electrophoretic techniques for the detection of isoenzymes in single daphniids. Arch. Hydrobiol. 95: 521–531.Google Scholar
  46. Wolf, H. G., 1987. Differences in the genetic structure of pond-dwelling and lake-dwelling Daphnia. Verh. int. Ver. Limnol. 23: 2056–2059.Google Scholar
  47. Wolf, H. G. & A. Hobæk, 1986. Ecological genetics of Norwegian Daphnia I. Genetic differentiation between pigmented and unpigmented alpine pond populations. Hereditas 104: 193–198.Google Scholar
  48. Zaret, T. M., 1980. Predation and freshwater communities. Yale University Press, New Haven & London. 187 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Anders Hobæk
    • 1
  • Hans Georg Wolf
    • 2
  1. 1.Museum of Zoology, Dept. of Animal EcologyUniversity of BergenBergenNorway
  2. 2.Max-Planck-Institut für Limnologie, Abt. ÖkophysiologiePlönGermany

Personalised recommendations