Advertisement

Euphytica

, Volume 31, Issue 1, pp 241–252 | Cite as

West african okra — Morphological and cytogenetical indications for the existence of a natural amphidiploid of Abelmoschus esculentus (L.) Moench and A. manihot (L.) Medikus

  • J. S. Siemonsma
Article

Summary

Based on a collection of 314 entries of cultivated okra from Ivory Coast, data are presented on the morphology, chromosome numbers and interspecific crossing behaviour of two very distinct okra types. These types have been called provisionally ‘Soudanien’ and ‘Guinéen’.

The ‘Soudanien’ type corresponds to botanical descriptions and previously reported chromosome numbers of Abelmoschus esculentus (L.) Moench.

The hypothesis is forwarded that the ‘Guinéen’ type, which is gradually replacing the ordinary okra in the humid parts of West Africa, is a natural amphidiploid of Abelmoschus esculentus 2n=130–140 and A. manihot 2n=60–68.

The existing taxonomical classifications at the species level in the genus Abelmoschus are unsatisfactory. Detailed cytogenetical observations on Asian material of okra and related species are likely to provide more examples of the existence of amphidiploids in the genus.

Index words

Abelmoschus spp. okra gombo ‘Soudanien’ type ‘Guinéen’ type origin of species genetic variation chromosome numbers interspecific hybridization taxonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates, D. M., 1968. Notes on the cultivated Malvaceae. 2. Abelmoschus. Baileya 16: 99–112.Google Scholar
  2. Borssum Waalkes, J.van, 1966. Malesian Malvaceae revised. Blumea 14 (1): 1–251.Google Scholar
  3. Breslavetz, L., G.Medwedewa & W.Magitt, 1934. Zytologische Unterschungen der Bastpflanzen. Z. Züchtung 19: 229–234.Google Scholar
  4. Candolle, A. P. de, 1824. Hibiscus. In: Prodromus systematis naturalis regni vegetabilis 1: 446–455.Google Scholar
  5. Candolle, A. P. de, 1883. Origine des plantes cultivées. Paris. p. 150–151.Google Scholar
  6. Chevalier, A., 1940. L'origine, la culture et les usages de cinq Hibiscus de la section Abelmoschus. Rev. Bot. Appl. 20: 319–328, 402–419.Google Scholar
  7. Chizaki, Y., 1934. Breeding of a new interspecific hybrid between Hibiscus esculentus L. and H. manihot L. Proc. Crop Sci. Soc. Japan 6: 164–172.Google Scholar
  8. Datta, P. C. & A.Naug, 1968. A few strains of Abelmoschus esculentus (L.) Moench. Their karyological study in relation to phylogeny and organ development. Beitr. Biol. Pflanzen 45: 113–126.Google Scholar
  9. Ford, C. E., 1938. A contribution to a cytogenetical survey of the Malvaceae. Genetica 20: 431–452.Google Scholar
  10. Gadwal, V. R., A. B.Joshi & R. D.Iyer, 1968. Interspecific hybrids in Abelmoschus through ovule and embryo culture. Indian J. Genet. Plant Breed. 28: 269–274.Google Scholar
  11. Hardas, M. W. & A. B.Joshi, 1954. A note on the chromosome numbers of some plants. Indian J. Genet. Plant Breed. 14 (1): 47–49.Google Scholar
  12. Hochreutiner, B. P. G., 1924. Genres nouveaux et genres discutés de la famille des Malvacées. Candollea 2: 79–90.Google Scholar
  13. Joshi, A. B., V. R. Gadwal & M. W. Hardas, 1974. Okra. In: Hutchinson, J. B., Evolutionary studies in world crops. Diversity and change in the indian subcontinent. Cambridge. p. 99–105.Google Scholar
  14. Joshi, A. B. & M. W.Hardas, 1953. Chromosome number in Abelmoschus tuberculatus Pal. & Singh — a species related to cultivated bhindi. Curr. Sci., Bangalore 22: 384–385.Google Scholar
  15. Joshi, A. B. & M. W.Hardas, 1956. Alloploid nature of okra, Abelmoschus esculentus (L.) Moench. Nature 178: 1190.Google Scholar
  16. Joshi, A. B. & M. W.Hardas, 1976. Okra. In: Simmonds, N. W., Evolution of crop plants. Longman, London. p. 194–195.Google Scholar
  17. Kamalova, G. V., 1977. Cytologogical studies of some species of the Malvaceae. Uzbekistan Biologija Zurnali 3: 66–69.Google Scholar
  18. Kuwada, H., 1957a. Crossability in the reciprocal crosses between Abelmoschus esculentus and A. manihot. and the characters and meiosis in F1 hybrids. Jap. J. Breed. 7: 93–102.Google Scholar
  19. Kuwada, H., 1957b. Crosscompatibility in the reciprocal crosses between amphidiploid and its parents (Abelmoschus esculentus and A. manihot) and the characters and meiotic division in the hybrids obtained among them. Jap. J. Breed. 7: 103–111.Google Scholar
  20. Kuwada, H., 1961. Studies on the interspecific crossing between Abelmoschus esculentus (L.) Moench and A. manihot (L.) Medikus, and the various hybrids and polyploids derived from the above two species. Mem. Fac. Agric. Kagawa 8: pp. 91.Google Scholar
  21. Kuwada, H., 1966. The new amphidiploid plant named Abelmoschus tubercular esculentus, obtained from the progeny of the reciprocal crossing between A. tuberculatus and A. esculentus. Jap. J. Breed. 16 (1): 21–30.Google Scholar
  22. Kuwada, H., 1974. F1 hybrids of Abelmoschus tuberculatus × A. manihot with reference to the genome relationship. Jap. J. Breed. 24(5): 207–210.Google Scholar
  23. Martin, F. W., A. M.Rhodes, M.Perez & F.Diaz, 1981. Variation in okra. Euphytica 30: 697–705.Google Scholar
  24. Masters, M. T., 1875. In: Hooker, J. D., Flora of British India 1: 320–348. Ashford, Kent.Google Scholar
  25. Medikus, F. K., 1787. Ueber einige künstliche Geschlechter aus der Malvenfamilie, denn der Klasse der Monadelphien. Mannheim. p. 45–46.Google Scholar
  26. Medwedewa, G. B., 1936. Karyological review of 15 species of the genus Hibiscus. J. Bot. URSS 21: 533–550.Google Scholar
  27. Murdock, G. P., 1959. Africa, its people and their culture history, New York. pp. 456.Google Scholar
  28. Pal, B. P., H. B.Singh & V.Swarup, 1952. Taxonomic relationships and breeding possibilities of species of Abelmoschus related to okra (A. esculentus). Bot. Gaz. 113: 455–464.CrossRefGoogle Scholar
  29. Purewal, S. S. & G. S.Randhawa, 1947. Studies in Hibiscus esculentus (Lady's finger). Chromosome and pollination studies. Indian J. Agric. Sci. 17: 129–136.Google Scholar
  30. Roy, R. P. & R. P.Jha, 1958. A semi-asynaptic plant of Abelmoschus esculentus (L.) Moench (= Hibiscus esculentus L.) Cytologia 23: 356–361.Google Scholar
  31. Siemonsma, J. S., 1979. La variabilité naturelle du matériel végétal du gombo, Abelmoschus esculentus (L.) 011 Moench, en Côte d'Ivoire. Rapport Annuel 1978, Centre Néerlandais, ORSTOM, Adiopodoumé, Côte d'Ivoire. p. 27–34.Google Scholar
  32. Siemonsma, J. S., 1980. Okra cultivars from Ivory Coast. A note for the International Board for Plant Genetic Resources. Centre Néerlandais, ORSTOM, Adiopodoumé, Ivory Coast.Google Scholar
  33. Singh, B. N., S. C.Chakravarthi & G. O.Kapoor, 1938. An interspecific hybrid between Hibiscus ficulneus and H. esculentus. J. Hered. 29 (1): 37–41.Google Scholar
  34. Singh, H. B. & AbhaBhatnagar, 1975. Chromosome number in an okra from Ghana. Indian J. Genet. Plant Breed. 36: 26–27.Google Scholar
  35. Skovsted, A., 1935. Chromosome numbers in the family Malvaceae 1. J. Genet. 31: 263–296.Google Scholar
  36. Teshima, T., 1933. Genetical and cytological studies in an interspecific hybrid of Hibiscus esculentus and H. manihot. J. Fac. Agric. Hokkaido Univ. 34: 1–155.Google Scholar
  37. Tischler, G., 1931. Pflanzliche Chromosomen-Zahlen (Nachtrag no. 1). Tab. Biol. 7: 109–226.Google Scholar
  38. Ugale, S. D., R. C.Patil & S. S.Khupse, 1976. Cytogenetic studies in the cross between Abelmoschus esculentus and A. tetraphyllus. J. Maharashtra Agric. Univ. 1 (2–6): 106–110.Google Scholar
  39. Ustinova, E. I., 1937. Interspecific hybridization in the genus Hibiscus. Genetica 19: 356–366.Google Scholar
  40. Ustinova, E. I., 1949. A description of the interspecific hybrid of Hibiscus esculentus and H. manihot. Priroda (Nature) 6: 58–60.Google Scholar
  41. Vavilov, N. I., 1951. The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 13(1–6), 1949–1950.Google Scholar

Copyright information

© H. Veenman en Zonen B.V 1982

Authors and Affiliations

  • J. S. Siemonsma
    • 1
  1. 1.Centre NéerlandaisORSTOMAdiopodouméIvory Coast

Personalised recommendations