Hydrobiologia

, Volume 193, Issue 1, pp 117–138 | Cite as

Scraping a living: a review of littorinid grazing

  • T. A. Norton
  • S. J. Hawkins
  • N. L. Manley
  • G. A. Williams
  • D. C. Watson
Article

Abstract

Littorinid snails are predominantly herbivorous and the versatility of their radulae enables them to feed on a variety of macroscopic and microscopic plants in a diversity of habitats. Some are selective feeders preferring some species of algae to others, and rejecting some even after a prolonged period of starvation. Different species of snail exhibit different preferences. The factors affecting the attractiveness and edibility of food plants are discussed and food value considered.

Foraging behaviour of littorinids is briefly reviewed in relation to the influence of chemical cues from the algae. Littorinids appear to be able to select or reject algae without having ingested them, having perceived the plants from a distance, moving towards favoured foods (or habitat-providing plants) and away from those that it rejects. The nature of the chemical cues emitted by the algae is discussed. Temporal patterns of foraging activity show some evidence of an endogenous component which can be overridden by responses to environmental conditions. These patterns place restraints on energy intake.

The structural and chemical defences used by algae against littorinid grazing are considered. The importance of polyphenolic compounds is evaluated. The effects of grazing as a selective agency and a factor influencing algal populations are discussed. There is some evidence that life history patterns are a response to grazing. The influence of external physical factors, such as salinity on grazing pressure is demonstrated.

Finally, the impact of littorinid snails on intertidal communities is assessed in relation to their abundance and biogeographical distribution. The relative importance of littorinids is contrasted on shores possessing or lacking limpets.

Key words

feeding behaviour algal defences intertidal ecology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankel, W. E., 1937. Wie frisst Littorina? 1. Radula. Beweg. Fressp. Senckenberg. 19: 317–333.Google Scholar
  2. Bate-Smith, E. C., 1973. Haemanalysis of tannins: The concept of relative astringency. Phytochemistry 12: 907–912.Google Scholar
  3. Bebout, B., 1986. The role of marine fungi in the nutrition of the saltmarsh periwinkle, Littorina. Ph.D. thesis Univ. N. Carolina Chapel Hill.Google Scholar
  4. Behrens, S. Y., 1974. Ecological interactions of three Littorina (Gastropoda, Prosobranchia) along the West Coast of North America. Ph.D. thesis, University of Oregon.Google Scholar
  5. Behrens, S. Y., 1976. Range extension in Littorina sitkana Phillippi, 1845, and range contraction in Littorina planaxis Phillippi, 1847. Veliger 19: 368.Google Scholar
  6. Behrens, S. Y. & R. A. Mansour, 1987. Growth inhibition of native Littorina saxatilis (Olivi) by introduced L. littorea (L.). J. exp. mar. Biol. Ecol. 105: 187–196.Google Scholar
  7. Bertness, M. D., 1984. Habitat and community modification by an introduced herbivorous snail. Ecology 65: 370–381.Google Scholar
  8. Bertness, M. D., P. O. Yund & A. F. Brown, 1983. Snail grazing and the abundance of algal crusts on a sheltered New England rocky beach. J. exp. mar. Biol. Ecol. 71: 147–164.Google Scholar
  9. Branch, G. M., 1979. Food as a limiting resource for intertidal herbivores. S. African J. Sci. 75: 562.Google Scholar
  10. Branch, G. M., 1984. Competition between marine organisms: Ecological and evolutionary implications. Oceanogr. Mar. Biol. Ann. Rev. 22: 429–593.Google Scholar
  11. Branch, G. M. & M. L. Branch, 1981a. Competition in Bembicium auratum (Gastropoda) and its effect on microalgal standing stock in mangrove muds. Oecologia (Berl.) 46: 106–114.Google Scholar
  12. Branch, G. M. & M. L. Branch, 1981b. Experimental analysis of intraspecific competition in an intertidal gastropod, Littorina unifasciata. Aust. J. mar. Freshwat. Res. 32: 573–589.Google Scholar
  13. Bray, C. J., 1974. A study of the mobility of L. obtusata. MSc thesis in Ecology. University of Wales.Google Scholar
  14. Brenchley, G. A., 1982. Predation on encapsulated larvae by adults: effects of introduced species on the gastropod Ilyanassa obsoleta. Mar. Ecol. Progr. Ser. 9: 235–262.Google Scholar
  15. Brenchley, G. A., 1987. Herbivory in juvenile Ilyanassa obsoleta Neogastropoda. Veliger 30: 167–172.Google Scholar
  16. Calow, P., 1974. Some observations on locomotory strategies and their metabolic effects in two species of freshwater gastropods, Ancylus fluviatilis Mull and Planorbis contortus. Linn. Oecologia 16: 149–161.Google Scholar
  17. Carefoot, T. H., 1980. Studies on the nutrition and feeding preferences of Aplysia: development of an artificial diet. J. exp. mar. Biol. Ecol. 42: 241–252.Google Scholar
  18. Carlton, J. T., 1982. The historical biogeography of Littorina littorea on the Atlantic coast of North America and implications for the structure of New England intertidal communities. Malacol. Rev. 15: 146.Google Scholar
  19. Castenholz, R. W., 1961. The effect of grazing on marine littoral diatom populations. Ecology 42: 783–794.Google Scholar
  20. Chapman, M. G., 1986. Assessment of some controls in experimental transplants of intertidal gastropods. J. exp. mar. Biol. Ecol. 103: 181–201.Google Scholar
  21. Cheney, D. P., 1982. The role of Littorina littorea grazing on recruitment and distribution of algae in the lower intertidal zone. Malacol. Rev. 15: 147.Google Scholar
  22. Clokie, J. J. P. & A. D. Boney, 1980. The assessment of changes in intertidal ecosystems following major reclamation work: framework for interpretation of algal-dominated biota and the use and misuse of data. In J. H. Price, D. E. G. Irvine & W. F. Farnham (eds), The Shore Environment Vol. 2, 609–675.Google Scholar
  23. Colman, J. C., 1940. On the faunas inhabiting intertidal seaweed. J. mar. biol. Ass. U.K. 24: 129–184.Google Scholar
  24. Cornelius, P. F. S., 1972. Thermal acclimation of some intertidal invertebrates. J. exp. mar. Biol. Ecol. 9: 43–53.Google Scholar
  25. Croll, R. P., 1983. Gastropod chemoreception. Biol. Rev. 58: 293–319.Google Scholar
  26. Cubit, J. D., 1984. Herbivory and the seasonal abundance of algae on a high intertidal rock shore. Ecology 63: 1905–1917.Google Scholar
  27. Dahl, A. L., 1964. Macroscopic algal foods of Littorina planaxis Philippi and Littorina scutulata Gould. Veliger 7: 139–143.Google Scholar
  28. Dinter, I. & P. J. Manos, 1972. Evidence of a pheromone in the marine periwinkle Littorina littorea. Veliger 15: 45–47.Google Scholar
  29. Fletcher, A., 1980. Marine and maritime lichens of rocky shores: their ecology, physiology and biological interactions in J. P. Price, D. E. G. Irvine & W. F. Farnham (eds), The Shore Environment Vol. 2: 789–842.Google Scholar
  30. Foster, M. S., 1964. Microscopic algal food of Littorina planaxis Phillipi and Littorina scutulata Gould. Veliger 7: 149–152.Google Scholar
  31. Fralick, R. A., K. W. Turgeon & A. C. Mathieson, 1974. Destruction of kelp populations by Lacuna vincata (Montagu). Nautilus 88: 112–114.Google Scholar
  32. Fretter, V. & A. Graham, 1962. British Prosobranch Molluscs. Ray Soc. London. 755 pp.Google Scholar
  33. Frid, C. L. J. & R. James, 1988. Interactions between two species of saltmarsh gastropod, Hydrobia ulvae and Littorina littorea. Mar. Ecol. Prog. Ser. 43: 173–179.Google Scholar
  34. Frings, H. & C. Frings, 1965. Chemosensory bases of food-finding and feeding in Aplysia juliana (Mollusca, opisthobranchia). Biol. Bull. 128: 211–217.Google Scholar
  35. Garrity, S. D., 1984. Some adaptations of gastropods to physical stress on a tropical rocky shore. Ecology 65: 559–574.Google Scholar
  36. Geiselman, J. A., 1980. Ecology of chemical defenses of algae against the herbivorous snail, Littorina littorea in the New England rocky intertidal community. Ph.D. thesis Woods Hole Oceanographic Institution, Massachucetts Institute of Technology: 209 pp.Google Scholar
  37. Geiselman, J. A. & O. J. McConnell, 1981. Polyphenols in brown algae Fucus vesiculosus and Ascophyllum nodosum: chemical defenses against the marine herbivorous snail, Littorina littorea. J. chem. Ecol. 7: 1115–1133.Google Scholar
  38. Gendron, R. P., 1977. Habitat selection and migratory behaviour of the intertidal gastropod, Littorina littorea (L.). J. anim. Ecol. 46: 79–92.Google Scholar
  39. Goldstein, J. L. & T. Swain, 1965. The inhibition of enzymes by tannins. Phytochemistry 4: 185–192.Google Scholar
  40. Grahame, J., 1973. Assimilation efficiency of Littorina littorea (L.) (Gastropoda Prosobranchiata). J. anim. Ecol. 42: 383–389.Google Scholar
  41. Guiterman, J. D., 1970. The population biology of Littorina obtusata (L.) (Gastropoda Prosobranchiata). Ph.D. thesis. University of Wales.Google Scholar
  42. Haseman, J. D., 1911. The rhythmical movements of Littorina littorea synchronous with ocean tides. Biol. Bull. 21: 113–121.Google Scholar
  43. Hawkins, S. J., 1981. The influence of season and barnacles on the algal colonization of Patella vulgata exclusion areas. J. mar. biol. Ass. U.K. 61: 1–15.Google Scholar
  44. Hawkins, S. J. & R. G. Hartnoll, 1983. Grazing of intertidal algae by marine invertebrates. Oceanogr. mar. biol. Ann. Rev. 21: 195–282.Google Scholar
  45. Hawkins, S. J. & K. Hiscock, 1983. Some anomalies on Lundy in the distribution of common eulittoral prosobranchs with planktonic larvae. J. moll Stud. 49: 86–88.Google Scholar
  46. Hawkins, S. J., D. C. Watson, A. S. Hill, S. Hutchinson, S. Harding, M. A. Kyriakides & T. A. Norton, 1989. A comparison of feeding mechanisms in microphagous herbivorous gastropods in relation to resource partitioning. J. moll. Stud. 55: 151–165.Google Scholar
  47. Hunter, R. D. & W. D. Russell-Hunter, 1983. Bioenergetic and community changes in intertidal aufwuchs grazed by Littorina littorea Ecology 64: 761–769.Google Scholar
  48. Hylleberg, J. & J. T. Christensen, 1978. Factors affecting the intea-specific competition and size distribution of the periwinkle Littorina littorea (L.). Natura jutl. 20: 193–202.Google Scholar
  49. Imrie, D. W., S. J. Hawkins & C. R. McCrohan, 1989. The olfactory-gustatory basis of food preference in the herbivorous prosobranch, Littorina littorea L.. J. moll. Stud. 55: 217–225.Google Scholar
  50. Keser, M. & B. R. Larson, 1984. Colonization and growth dynamics of three species of Fucus. Mar. Ecol. Progr. Ser. 15: 125–134.Google Scholar
  51. Kohlmeyer, J. & B. Bebout, 1986. On the occurrence of marine fungi in the diet of Littorina angulifera and observations on the behaviour of the periwinkle. P.S.Z.N.I. mar. Ecol. 7: 333–343.Google Scholar
  52. Land, M. F., 1968. Functional aspects of the optical and retinal organisation of the mollusc eye. Symposia of the Zoological Society, Lond. 23: 75–96.Google Scholar
  53. Lein, T. E., 1980. The effects of Littorina littorea (Gastropoda) grazing on littoral green algae in the inner Oslofjord, Norway. Sarsia 65: 87–92.Google Scholar
  54. Lein, T. E., 1984. A method for the experimental exclusion of littorina littorea L. (Gastropoda) and the establishment of fucoid germlings in the field. Sarsia 69: 83–86.Google Scholar
  55. Lewis, J. R., 1964. The Ecology of Rocky Shores. English Universities Press, London: 323 pp.Google Scholar
  56. Little, C., 1989. Factors governing patterns of foraging activity in littoral marine herbivorous gastropods. J. moll. Stud. 55: 273–284.Google Scholar
  57. Little, C., G. A. Williams, D. Morritt, J. A. Perrins & P. Sterling, 1988. Foraging behaviour of Patella vulgata L. in an Irish sea-lough. J. exp. mar. Biol. Ecol. 120: 1–21.Google Scholar
  58. Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: Importance of herbivore food preference and algal competitive abilities. Am. Nat. 112: 23–39.Google Scholar
  59. Lubchenco, J., 1980. Algal zonation in a New England rocky intertidal community — an experimental analysis. Ecology 61: 33–344.Google Scholar
  60. Lubchenco, J., 1982. Effects of grazers and algal competitors on fucoid colonization in tide pools. J. Phycol. 18: 544–550.Google Scholar
  61. Lubchenco, J., 1983. Littorina and Fucus: Effects of herbivores, substratum heterogeneity and plant escapes during succession. Ecology 64: 1116–1123.Google Scholar
  62. Lubchenco, J. L. & J. D. Cubit, 1980. Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61: 676–687.Google Scholar
  63. Lubchenco, J. L. & S. D. Gaines, 1981. A unified approach to marine plant-herbivore interactions. I. Populations and communities. Annu. Rev. Ecol. Syst. 12: 405–437.Google Scholar
  64. Lubchenco, J. & B. A. Menge, 1978. Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 48: 67–94.Google Scholar
  65. Luckens, P. A., 1974. Removal of intertidal algae by herbivores in experimental frames and on shores near Auckland. N.Z. J. mar. Freshwat. Res. 8: 637–654.Google Scholar
  66. Mclean, R. F., 1967. Measurements of beachrock erosion by some tropical marine gastropods. Bull. mar. Sci. 17: 551–561.Google Scholar
  67. McQuaid, C. D., 1981. The establishment and maintenance of vertical size gradients in populations of Littorina africana knysnaensis (Phillippi) on an exposed rocky shore. J. exp. mar. Biol. Ecol. 54: 77–89.Google Scholar
  68. Menge, J. L., 1975. Effect of herbivores on the community structure on the New England rocky intertidal region: distribution, abundance and diversity of algae. Ph.D. Thesis, Harvard University. 165 pp.Google Scholar
  69. Menge, B. A., 1976. Organization of the New England rocky intertidal community: Role of predation, competition and environmental heterogeneity. Ecol. Monogr. 49: 355–369.Google Scholar
  70. Menge, B. & J. Lubchenco, 1981. Community organization in temperate and tropical rocky intertidal habitats: prey refuges in relation to consumer pressure gradients. Ecol. Monogr. 51: 429–450.Google Scholar
  71. Naylor, E., 1985. Tidal rhythmic behaviour of marine animals. In M. S. Laverack (ed.), Physiological Adaptations of Marine Animals. Symposia of the Society for Experimental Biology, Symposium XXXIX. The Company of Biologists Ltd.: 63–93.Google Scholar
  72. Newell, G. E., 1958a. The behaviour of Littorina littorea (L.) under natural conditions and its relation to position on the shore. J. mar. biol. Ass. U.K. 37: 229–239.Google Scholar
  73. Newell, G. E., 1958b. An experimental analysis of the behaviour of Littorina littorea (L.) under natural conditions and in the laboratory. J. mar. biol. Ass. U.K. 37: 241–266.Google Scholar
  74. Newell, G. E., 1965. The eye of Littorina littorea. Proc. zool. Soc. Lond. 144: 75–86.Google Scholar
  75. Newell, R. C., 1970. Biology of Intertidal Animals. Lagos Press. London, 555 pp.Google Scholar
  76. Newell, R. C., V. I. Pye & M. Ahsanullah, 1971. Factors affecting the feeding rate of the winkle Littorina littorea. Mar. Biol. 9: 138–144.Google Scholar
  77. Nicotri, R. E., 1977. Grazing effects of four marine intertidal herbivores on the microflora. Ecology 58: 1020–1032.Google Scholar
  78. North, W. J., 1954. Size distribution, erosive activities and gross metabolic efficiency of the marine intertidal snails Littorina planaxis and L. scutulata. Biol. Bull. 106: 185–197.Google Scholar
  79. Norton, T. A., 1971. An ecological study of the fauna inhabiting the sublittoral marine algae Saccorhiza polyschides (Lightf) Batt. Hydrobiologia 37: 215–231.Google Scholar
  80. Norton, T. A., 1986. The ecology of macroalgae in the Firth of Clyde. In J. A. Allen, P. R. O. Barnett, J. M. Boyd, R. C. Kirkwood & J. C. Smyth (eds.), The Environment of the Estuary and Firth of Clyde. Proc. Roy. Soc. Edinb. 90B: 225–269.Google Scholar
  81. Odum, E. P. & A. E. Smalley, 1959. Comparison of population energy flow of a herbivorous and deposit-feeding invertebrate in a salt marsh ecosystem. Proc. natn. Acad. Sci. U.S.A. 45: 617–622.Google Scholar
  82. Petpiroon, S. & E. Morgan, 1983. Observations on the tidal activity rhythm of the periwinkle Littorina nigrolineata (Gray). Mar. Behav. & Physiol. 9: 171–192.Google Scholar
  83. Petraitis, P. S., 1982. Occurrence of random and directional movements in the periwinkle Littorina littorea (L.). J. exp. mar. Biol. Ecol. 59: 207–217.Google Scholar
  84. Petraitis, P. S., 1983. Grazing patterns of the periwinkle and their effect on sessile intertidal organisms. Ecology 64: 522–533.Google Scholar
  85. Petraitis, P. S., 1987. Factors affecting rocky intertidal shores of New England: Herbivory and predation in sheltered bays. J. exp. mar. Biol. Ecol. 109: 117–136.Google Scholar
  86. Petraitis, P. S. & L. Sayigh, 1987. In situ measurement of radula movements of three species of Littorina (Gastropoda; Littorinidae). Veliger 30.Google Scholar
  87. Raffaelli, D. G., 1985. Functional feeding groups of some intertidal molluscs defined by gut contents analysis. J. moll. Stud. 51: 233–239.Google Scholar
  88. Raffaelli, D. G. & R. N. Hughes, 1978. The effect of crevice size and availability on populations of Littorina rudis and Littorina neritoides. J. anim. Ecol. 47: 71–83.Google Scholar
  89. Ragan, M. A. & K. W. Glombitza, 1986. Phlorotannins, brown alga polyphenols. Progress in Phycol. Res. 4: 129–241.Google Scholar
  90. Reimchem, T. E., 1974. Studies on the biology and colour polymorphism of two sibling species of marine gastropod (Littorina). Ph.D. thesis, University of Liverpool. 389 pp.Google Scholar
  91. Robertson, A. I. & K. H. Mann, 1982. Population dynamics and life history adaptations of Littorina neglecta Bean in an eelgrass meadow (Zostera marina L.) in Nova Scotia. J. exp. mar. Biol. Ecol. 63: 151–171.Google Scholar
  92. Sacchi, C. F., A. O. Ambrogi & D. Voltolini, 1981. Recherches sur le spectre trophique compare de Littorina saxatilis (Olivi) et de L. nigrolineata (Gray) (Gastropoda, Prosobranchia) sur le greve de Roscof. Cah. Biol. mar. 22: 83–88.Google Scholar
  93. Santelices, B. & R. Ugarte, 1987. Algal life-history strategies and resistance to digestion. Mar. Ecol. Prog. Ser. 35: 267–275.Google Scholar
  94. Sieburth, J. McN. & A. Jensen, 1968. Studies on algal substances in the sea. I. Gelbstoff (humic material) in terrestrial and marine waters. J. exp. mar. biol. Ecol. 2: 174–189.Google Scholar
  95. Sieburth, J. McN. & J. L. Tootle, 1981. Seasonality of microbial fouling on Ascophyllum nodosum (L.) Le Jol., Fucus vesiculosus L., Polysiphonia lanosa (L.) Tandy and Chondrus crispus Stackh. J. Phycol. 17: 57–64.Google Scholar
  96. Steneck, R. S. & L. Watling, 1982. Feeding capabilities and limitations of herbivorous molluscs: a functional group approach. Mar. Biol. 68: 299–319.Google Scholar
  97. Stephenson, T. A. & A. Stephenson, 1949. The universal features of zonation between tidemarks on rocky coasts. J. Ecol. 37: 289–305.Google Scholar
  98. Schonbeck, M. W. & T. A. Norton, 1980. Factors controlling the lower limits of fucoid algae on the shore. J. exp. mar. Biol. Ecol. 43: 131–150.Google Scholar
  99. Tempel, A. S., 1973. Tannin measuring techniques: A review. J. chem. Ecol. 8: 1289–1298.Google Scholar
  100. Thamdrup, H. M., 1935. Beitrage zur Okologie der Wattenfauna. Meddr. Kommn. Havunders, Serie. Fiskeri 10: 1–125.Google Scholar
  101. Thomas, J. D., 1986. The chemical ecology of Biomphalaria glabrata (Say): Sugars as attractants and arrestants. Comp. Biochem. Physiol. 83: 457–460.Google Scholar
  102. Thomas, J. D., J. Osfosu-Barko & R. L. Patience, 1983. Behavioural responses to carboxylic and amino acids by Biomphalaria glabrata (Say), the snail host of Schistosoma mansoni (Sambon), and other freshwater molluscs. Comp. Biochem. Physiol. 75: 57–76.Google Scholar
  103. Thomas, J. D., P. R. Sterry, H. Jones, M. Gubala & B. M. Grealy, 1986. The chemical ecology of Biomphalaria glabrata (Say): Sugars as phagostimulants. Comp. Biochem. Physiol. 83a: 461–475.Google Scholar
  104. Thomas, M. L. H. & F. H. Page, 1983. Grazing by the gastropod Lacuna vincta in the lower intertidal area of Musquash Head, New Brunswick, Canada. J. mar. biol. Ass. U.K. 63: 725–736.Google Scholar
  105. Townsend, C. R. & R. N. Hughes, 1981. Maximising net energy returns from foraging. In C. R. Townsend & P. Calow (eds), Physiological Ecology: an Evolutionary Approach to Resource Use. Blackwell Scientific Publs. Oxford. 86–108.Google Scholar
  106. Uhazy, L. S., R. D. Tanaka & A. J. MacInnis, 1978. Schistosoma mansoni: identification of chemicals that attract or trap its snail vector Biomphalaria glabrata. Science 201: 924–926.Google Scholar
  107. Underwood, A. J., 1979. The ecology of intertidal gastropods. Adv. Mar. Biol., 16: 111–210.Google Scholar
  108. Underwood, A. J. & K. E. McFadyen, 1981. Ecology of the intertidal snail Littorina acutispira Smith. J. exp. mar. biol. Ecol. 66: 169–197.Google Scholar
  109. Underwood, A. J. & M. G. Chapman, 1985. Multifactorial analyses of directions of movement of animals. J. exp. mar. Biol. Ecol. 91: 17–43.Google Scholar
  110. Van Alstyne, K. L., 1988. Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology. 69: 655–663.Google Scholar
  111. Van Dongen, A., 1956. The preference of Littorina obtusata for Fucaceae. Archs. néerl. zool. 11: 373–386.Google Scholar
  112. Warren, J. H., 1985. Climbing as an avoidance behaviour in the salt marsh periwinkle Littorina irrorata (Say). J. exp. mar. Biol. Ecol. 89: 11–28.Google Scholar
  113. Watson, D. C., 1983. Seaweed palatability and selective grazing by littoral gastropods. Ph.D. Thesis, University of Glasgow. 187 pp.Google Scholar
  114. Watson, D. C, & T. A. Norton, 1985a. Dietary preferences of the common periwinkle Littorina littorea. J. exp. mar. Biol. Ecol. 88: 193–211.Google Scholar
  115. Watson, D. C. & T. A. Norton, 1985b. The physical characteristics of seaweed thalli as deterrents to littorine grazers. Bot. mar. 28: 383–387.Google Scholar
  116. Watson, D. C. & T. A. Norton, 1987. The habitat and feeding preferences of Littorina obtusata (L.) and Littorina mariae Sacchi et Rastelli. J. exp. mar. Biol. Ecol. 112: 61–72.Google Scholar
  117. Williams, G. A., 1987. Niche partitioning in Littorina obtusata and Littorina mariae. Ph.D. thesis, University of Bristol.Google Scholar
  118. Wright, J. R. & R. G. Hartnoll, 1981. An energy budget for a population of the limpet Patella vulgata. J. mar. biol. Ass. U.K. 61: 627–646.Google Scholar
  119. Wright, J. R., 1977. The construction of energy budgets for three intertidal gastropods, Patella vulgata, Littorina littoralis and Nucella lapillus. Ph.D. thesis, University of Liverpool.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • T. A. Norton
    • 1
  • S. J. Hawkins
    • 1
  • N. L. Manley
    • 1
  • G. A. Williams
    • 1
  • D. C. Watson
    • 2
  1. 1.Port Erin Marine LaboratoryLiverpool UniversityIsle of ManUK
  2. 2.Department of BotanyUniversity of GlasgowGlasgowUK

Personalised recommendations