, Volume 193, Issue 1, pp 53–69 | Cite as

Biochemical genetic variation in the genus Littorina (Prosobranchia:Mollusca)

  • Robert D. Ward


The genus Littorina has been subject to many studies of electrophoretically detectable variation, mostly aimed either at clarifying questions concerned with population structure, or at clarifying difficult taxonomic/systematic problems. This paper reviews many of these studies. Topics covered include Hardy-Weinberg deviations, the extent of genetic differentiation among populations within species, founder effects and the effects of human introductions on genetic variation, the biological significance of allozyme variation, and the uses of allozyme variation in Littorina systematics.

Key words

heterozygosity genetic differentiation biochemical systematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb & N. C. Saunders, 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18: 489–522.Google Scholar
  2. Bandel, K. & D. Kadolsky, 1982. Western Atlantic species of Nodilittorina (Gastropoda: Prosobranchia): comparative morphology and its functional, ecological, phylogenetic and taxonomic implications. Veliger 25: 1–42.Google Scholar
  3. Berger, E. M., 1973. Gene-enzyme variation in three sympatric species of Littorina. Biol. Bull. 145: 83–90.Google Scholar
  4. Berger, E. M., 1977. Gene-enzyme variation in three sympatric species of Littorina. II. The Roscoff population, with a note on the origin of North American L. littorea. Biol. Bull. 153: 255–264.Google Scholar
  5. Borkowski, T. V., 1975. Variability among Caribbean Littorinidae. Veliger 17: 369–377.Google Scholar
  6. Caugant, D. & J. Bergerard, 1980. The sexual cycle and reproductive modality in Littorina saxatilis Olivi (Mollusca: Gastropoda). Veliger 23: 107–111.Google Scholar
  7. Chakraborty, R. & M. Nei, 1977. Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31: 347–356.Google Scholar
  8. Dautzenberg, P. H. & H. Fischer, 1912. Mollusques provenant des campagnes de ‘Hirondelle’ et de la ‘Princesse Alice’ dans les Mers du Nord. Result. Camp. scient. Prince Albert 1, 37: 187–201.Google Scholar
  9. Edwards, C. A. & D. O. F. Skibinski, 1987. Genetic variation of mitochondrial DNA in mussel (Mytilus edulis and M. galloprovincialis) populations from South West England and South Wales. Mar. Biol. 94: 547–556.Google Scholar
  10. Fevolden, S. E. & S. P. Garner, 1987. Environmental stress and allozyme variation in Littorina littorea (Prosobranchia) Mar. Ecol. prog. Ser. 39: 129–136.Google Scholar
  11. Fretter, V. & A. Graham, 1980. The prosobranch molluscs of Britain and Denmark. Part V — Marine Littorinacea. J. moll. Stud., suppl. 7.Google Scholar
  12. Gaines, M. S., J. Caldwell & A. M. Vivas, 1974. Genetic variation in the mangrove periwinkle Littorina angulifera. Mar. Biol. 27: 327–332.Google Scholar
  13. Gallagher, S. B. & G. K. Reid, 1974. Reproductive behaviour and early development in Littorina scabra angulifera and Littorina irrorata (Gastropoda: Prosobranchia) in the Tampa Bay region of Florida. Malac. Rev. 7: 105–125.Google Scholar
  14. Garner-Kepkay, K. E., E. Zouros, L. M. Dickie & K. R. Freeman, 1983. Genetic differentiation in the face of gene flow: a study of mussel populations from a single Nova Scotian embayment. Can. J. Fish. aquat. Sci. 40: 443–451.Google Scholar
  15. Grant, W. S. & M. I. Cherry, 1985. Mytilus galloprovincialis Lmk. in southern Africa. J. exp. mar. Biol. Ecol. 90: 179–191.Google Scholar
  16. Hannaford Ellis, C. J., 1978. Littorina arcana sp. nov.: a new species of winkle (Gastropoda: Prosobranchia: Littorinidae). J. Conch. 29: 304.Google Scholar
  17. Hannaford Ellis, C. J., 1979. Morphology of the oviparous rough winkle, Littorina arcana Hannaford Ellis, 1978, with notes on the taxonomy of the L. saxatilis species-complex (Prosobranchia: Littorinidae). J. Conch. 30: 43–56.Google Scholar
  18. Hannaford Ellis, C. J., 1983. Patterns of reproduction in four Littorina species. J. moll. Stud. 49: 98–106.Google Scholar
  19. Harris, H., 1966. Enzyme polymorphisms in man. Proc. r. Soc. Ser. B 164: 298–319.Google Scholar
  20. Heller, J., 1975. The taxonomy of some British Littorina species, with notes on their reproduction (Mollusca: Prosobranchia). Zool. J. linn. Soc. 56: 131–151.Google Scholar
  21. Hilbish, T. J. & R. K. Koehn, 1985. Dominance in physiological phenotypes and fitness at an enzyme locus. Science 229: 52–54.Google Scholar
  22. Hoagland, K. E., 1985. Genetic relationships between one British and several North American populations of Crepidula fornicata based on allozyme studies (Gastropoda: Calyptraeidae). J. moll. Stud. 51: 177–182.Google Scholar
  23. Hochachka, P. & G. Somero, 1973. Strategies of Biochemical Adaptation, Saunders, Philadelphia.Google Scholar
  24. Hughes, R. N. & D. J. Roberts, 1981. Comparative demography of Littorina rudis, L. nigrolineata and L. neritoides on three contrasted shores in North Wales. J. anim. Ecol. 50: 251–268.Google Scholar
  25. James, B. L., 1968. The characters and distribution of the subspecies and varieties of Littorina saxatilis (Olivi, 1872) in Britain. Cah. Biol. mar. 9: 143–165.Google Scholar
  26. Janson, K., 1982. Genetic and environmental effects on the growth rate of Littorina saxatilis. Mar. Biol. 69: 73–78.Google Scholar
  27. Janson, K., 1985a. Genetic variation in three species of Caribbean periwinkles, Littorina angustior, L. lineolata, and L. ziczac (Gastropoda: Prosobranchia). Bull. mar. Sci. 37: 871–879.Google Scholar
  28. Janson, K., 1985b. Genetic and morphologic variation within and between populations of Littorina angulifera from Florida. Ophelia 24: 125–134.Google Scholar
  29. Janson, K., 1985c. A morphologic and genetic analysis of Littorina saxatilis (Prosobranchia) from Venice, and on the problem of saxatilis-rudis nomenclature. Biol. J. linn. Soc. 24: 51–59.Google Scholar
  30. Janson, K., 1987a. Allozyme and shell variation in two marine snails (Littorina, Prosobranchia) with different dispersal abilities. Biol. J. linn. Soc. 30: 245–256.Google Scholar
  31. Janson, K., 1987b. Genetic drift in small and recently founded populations of the marine snail Littorina saxatilis. Heredity 58: 31–37.Google Scholar
  32. Janson, K. & R. D. Ward, 1984. Microgeographic variation in allozyme and shell characters in Littorina saxatilis Olivi (Prosobranchia: Littorinidae). Biol. J. linn. Soc. 22: 289–307.Google Scholar
  33. Janson, K. & R. D. Ward, 1985. The taxonomic status of Littorina tenebrosa Montagu as assessed by morphological and genetic analyses. J. Conch. 32: 9–15.Google Scholar
  34. Johannesson, K. & B. Johannesson, 1989. Differences in allele frequencies of Aat between high and mid rocky shore populations of Littorina saxatilis (Olivi) suggest selection in this enzyme locus. Genet. Res. 54: 7–11.Google Scholar
  35. Johnson, M. S., J. Murray & B. Clarke, 1986. Allozymic similarities among species of Partula on Moorea. Heredity 56: 319–327.Google Scholar
  36. Kartavtsev, Y. P. & V. V. Ephremov, 1981. Genetic similarity and variability of two Littorinid species (Mollusca: Littorinidae). Genetika 17: 1029–1033.Google Scholar
  37. Kimura, M. & J. F. Crow, 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.Google Scholar
  38. Knight, A. J., R. N. Hughes & R. D. Ward, 1987. A striking example of the founder effect in the mollusc Littorina saxatilis. Biol. J. linn. Soc. 32: 417–426.Google Scholar
  39. Koehn, R. K., 1978. Physiology and biochemistry of enzyme variation: the interface of ecology and population genetics. In P. Brussard (ed.), Ecological Genetics: the Interface. Springer-Verlag, New York.Google Scholar
  40. Koehn, R. K., R. Milkman & J. B. Mitton, 1976. Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 30: 2–32.Google Scholar
  41. Lavie, B. & E. Nevo, 1987. Differential fitness of allelic isozymes in the marine gastropods Littorina punctata and Littorina neritoides, exposed to the environmental stress of the combined effects of cadmium and mercury pollution. Envir. Manage. 11: 345–349.Google Scholar
  42. Lewontin, R. C. & J. L. Hubby, 1966. A molecular approach to the study of genic heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54: 595–609.Google Scholar
  43. Mallet, A. L., E. Zouros, K. E. Gartner-Kepkay, K. R. Freeman & L. M. Dickie, 1985. Larval viability and heterozygote deficiency in populations of marine bivalves: evidence from pair matings of mussels. Mar. Biol. 87: 165–172.Google Scholar
  44. Mastro, E., V. Chow & D. Hedgecock, 1982. Littorina scutulata and Littorina plena; sibling species status of two prosobranch gastropod species confirmed by electrophoresis. Veliger 24: 239–246.Google Scholar
  45. Mill, P. & J. Grahame, 1988. Esterase variability in the gastropod Littorina saxatilis (Olivi) and L. arcana Ellis. J. moll. Stud. 54: 347–355.Google Scholar
  46. Mitton, J. B. & M. C. Grant, 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Annu. Rev. Ecol. Syst. 15: 479–499.Google Scholar
  47. Morris, S. R., 1979. Genetic Variation in the Genus Littorina. Unpublished thesis, University of Wales.Google Scholar
  48. Moyse, J., J. P. Thorpe & E. Al-Hamadani, 1982. The status of Littorina aestuarii Jeffreys. An approach using morphology and biochemical genetics. J. Conch. 31: 7–15.Google Scholar
  49. Murray, T. E., 1979. Evidence for an additional Littorina species and a summary of the reproductive biology of Littorina from California. Veliger 21: 469–474.Google Scholar
  50. Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.Google Scholar
  51. Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. natn. Acad. Sci. USA 70: 3321–3323.Google Scholar
  52. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  53. Nei, M. & D. Graur, 1984. The extent of protein polymorphism and the neutral mutation theory. Evol. Biol. 17: 73–118.Google Scholar
  54. Nei, M. & A. K. Roychoudhury, 1982. Genetic relationship and evolution of human races. Evol. Biol. 14: 1–59.Google Scholar
  55. Nei, M., T. Maruyama & R. Chakraborty, 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.Google Scholar
  56. Nevo, E., A. Beiles & R. Ben-Shlomo, 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. Lect. Notes Biomathematics 53: 13–213.Google Scholar
  57. Newkirk, G. F. & R. W. Doyle, 1975. Genetic analysis of shell shape variation in Littorina saxatilis on an environmental cline. Mar. Biol. 30: 227–237.Google Scholar
  58. Newkirk, G. F. & R. W. Doyle, 1979. Clinal variation at an esterase locus in Littorina saxatilis and L. obtusata. Can. J. Genet. Cytol. 21: 505–513.Google Scholar
  59. Noy, R., B. Lavie & E. Nevo, 1987. The niche-width variation hypothesis revisited: genetic diversity in the marine gastropods Littorina punctata (Gmelin) and L. neritoides (L.). J. exp. mar. Biol. Ecol. 109: 109–116.Google Scholar
  60. Raffaelli, D. G., 1977. Observations on the copulatory behaviour of Littorina rudis (Maton) and Littorina nigrolineata Gray. Veliger 20: 75–77.Google Scholar
  61. Raffaelli, D. G., 1979. The taxonomy of the Littorina saxatilis species-complex, with particular reference to the systematic status of Littorina patula Jeffrys. Zool. J. linn. Soc. 65: 219–232.Google Scholar
  62. Raffaelli, D. G., 1982. Recent ecological research on some European species of Littorina. J. moll. Stud. 48: 342–354.Google Scholar
  63. Reid, D. G., 1986. The Littorinid Molluscs of Mangrove Forests in the Indo-Pacific Region: the Genus Littoraria. British Museum (Natural History), London.Google Scholar
  64. Reid, D. G., 1989. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Phil. Trans. r. Soc., London. Ser. B 324: 1–110.Google Scholar
  65. Sacchi, C. F. & M. Rastelli, 1966. Littorina mariae n. sp.: les differences morphologique et ecologique entre ‘nairns’ et ‘normanaux’ chez l'espece L. obtusa (L.) (Gastropoda: Prosobranchia) et leur signification adaptive et evolutive. Atti Soc. ital. Sci. nat. 105: 351–369.Google Scholar
  66. Seeley, R. H., 1986. Intense natural selection caused a rapid morphological transition in a living marine snail. Proc. natn. Acad. Sci. USA 83: 6897–6901.Google Scholar
  67. Skibinski, D. O. F., 1985. Mitochondrial DNA variation in Mytilus edulis L. and the Padstow mussel. J. exp. mar. Biol. Ecol. 92: 251–258.Google Scholar
  68. Skibinski, D. O. F., J. A. Beardmore & T. F. Cross, 1983. Aspects of the population genetics of Mytilus (Mytilidae: mollusca) in the British Isles. Biol. J. linn. Soc. 19: 137–183.Google Scholar
  69. Smith, J. E., 1981. The natural history and taxonomy of shell variation in the periwinkles Littorina saxatilis and Littorina rudis. J. mar. biol. Ass. UK 61: 215–241.Google Scholar
  70. Smith, S. M., 1982. A review of the genus Littorina in British and Atlantic waters (Gastropoda: Prosobranchia). Malacologia 22: 535–539.Google Scholar
  71. Snyder, T. P. & J. L. Gooch, 1973. Genetic differentiation in Littorina saxatilis (Gastropoda). Mar. Biol. 22: 177–182.Google Scholar
  72. Thorpe, J. P., 1982. The molecular clock hypothesis: biochemical evolution, genetic differentiation, and systematics. Annu. Rev. Ecol. Syst. 13: 139–168.Google Scholar
  73. Van Valen, L., 1965. Morphological variation and width of ecological niche. Am. Nat. 99: 377–390.Google Scholar
  74. Wahlund, S., 1928. Zuzammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11: 65–106.Google Scholar
  75. Ward, R. D. & K. Janson, 1985. A genetic analysis of sympatric subpopulations of the sibling species Littorina saxatilis (Olivi) and Littorina arcana Hannaford Ellis. J. moll. Stud. 51: 86–94.Google Scholar
  76. Ward, R. D. & T. Warwick, 1980. Genetic differentiation in the molluscan species Littorina rudis and Littorina arcana (Prosobranchia: Littorinidae). Biol. J. linn. Soc. 14: 417–428.Google Scholar
  77. Ward, R. D., T. Warwick & A. J. Knight, 1986. Genetic analysis of ten polymorphic enzyme loci in Littorina saxatilis (Prosobranchia: Mollusca). Heredity 57: 233–241.Google Scholar
  78. Warmoes, T., 1986. Een inleidende systematische en taxonomische studie van het genus Littorina (Gastropoda, Prosobranchia). Licentiaatsthesis, Universitaire Instelling Antwerpen.Google Scholar
  79. Wilkins, N. P. & D. O'Regan, 1980. Generic variation in sympatric sibling species of Littorina. Veliger 22: 355–359.Google Scholar
  80. Woodruff, D. S., L. L. McMeekin, M. Mulvey & M. P. Carpenter, 1986. Population genetics of Crepidula onyx: variation in a Californian slipper snail recently established in China. Veliger 29: 53–63.Google Scholar
  81. Zouros, E., 1987. On the relation between heterozygosity and heterosis: an evaluation of the evidence from marine molluscs. In M. C. Rattazzi, J. G. Scandalios & G. S. Whitt (eds), Isozymes: Current Topics in Biological and Medical Research Vol. 15. Alan R. Liss, New York.Google Scholar
  82. Zouros, E. & D. W. Foltz, 1984. Possible explanations of heterozygote deficiency in bivalve molluscs. Malacalogia 25: 583–591.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Robert D. Ward
    • 1
  1. 1.Environmental Biology Unit, Department of Human SciencesUniversity of TechnologyLoughborough, LeicestershireUK

Personalised recommendations