Advertisement

Hydrobiologia

, Volume 188, Issue 1, pp 433–443 | Cite as

The valve movement response of mussels: a tool in biological monitoring

  • Kees J. M. Kramer
  • Henk A. Jenner
  • Dick de Zwart
Article

Abstract

Biological sensors are becoming more important to monitor the quality of the aquatic environment. In this paper the valve movement response of freshwater (Dreissena polymorpha) and marine (Mytilus edulis) mussels is presented as a tool in monitoring studies. Examples of various methods for data storage and data treatment are presented, elucidating easier operation and lower detection limits. Several applications are mentioned, including an early warning system based on this valve movement response of mussels.

Key words

biological monitoring mussels early warning system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, P. D., 1976. Effect of some pollutants on the filtration rate of Mytilus. Mar. Poll. Bull. 7: 228–231.Google Scholar
  2. Akberali, H. B. & J. E. Black, 1980. Behavioural responses of the bivalve Scrobicularia plana (da Costa) subjected to short-term copper (Cu II) concentrations. Mar. Environm. Res. 4: 97–107.Google Scholar
  3. Akberali, H. B. & J. Davenport, 1982. The detection of salinity changes by the marine bivalve molluscs Scrobicularia plana (da Costa) and Mytilus edulis (L.). J. Exp. Mar. Biol. Ecol. 58: 59–71.Google Scholar
  4. Akberali, H. B. & E. R. Trueman, 1985. Effects of the environmental stress on marine molluscs. Adv. Mar. Biol. 22: 102–198.Google Scholar
  5. Ameyaw-Akumfi, C. & E. Naylor, 1987. Temporal patterns of shell-gape in Mytilus edulis. Mar. Biol. 95: 237–242.Google Scholar
  6. Barnes, G. E., 1955. The behaviour of Anodonta cygnea L., and its neurophysiological basis. J. Exp. Biol., 32: 158–174.Google Scholar
  7. Bennett, M. F., 1954. The rhythmic activity of the quahog, Venus mercenaria, and its modification by light. Bio. Bull. Mar. Biol. Lab. 107: 174–191.Google Scholar
  8. Bayne, B. L., D. R. Dixon, A. Ivanovici, D. R. Livingstone, D. M. Lowe, M. N. Moore, A. R. D. Stebbing & J. Widdows, 1985. The effects of stress and pollution on marine animals. Preager Scientific, New York, 384 pp.Google Scholar
  9. Cairns, J., 1979. Biological monitoring — concept and scope. In: J. Cairns, G. P. Patil & W. E. Waters (eds.). Environmental biomonitoring, assessment, prediction and management. Int. Co-op Publ. House, Burtonsville, Ma, pp. 3–20.Google Scholar
  10. Davenport, J., 1977. A study of the effect of copper applied continuously and discontinuously to specimens of Mytilus edulis (L) exposed to steady and fluctuating salinity levels. J. Mar. Biol. Ass. UK. 57: 63–74.Google Scholar
  11. Davenport, J., 1979. The isolation response of mussels (Mytilus edulis L.) exposed to falling sea-water concentrations. J. Mar. Biol. Ass. UK. 59: 123–132.Google Scholar
  12. Davenport, J., 1981. The opening response of mussels (Mytilus edulis) exposed to rising sea-water concentrations. J. Mar. Biol. Ass. U.K. 61: 667–678.Google Scholar
  13. De Kock, W. C., 1986. Monitoring bio-available marine contaminants with mussels (Mytilus edulis) in the Netherlands. In: C. J. M. Kramer & G. P. Hekstra (eds). Monitoring in the marine environment. Part II. Environm. Mon. Assessm. 7: 209–220.Google Scholar
  14. De Zwart, D. & W. Slooff, 1987. Continuous effluent biomonitoring with an early warning system. In: Bengston, Norberg-King & Mount (Eds.). Effluent and ambient toxicity testing in the Göta Alv and Viskan Rivers, Sweden. Naturvardsverket Report 3275, 40 pp.Google Scholar
  15. Djangmah, J. S., S. E. Shumway & J. Davenport, 1979. Effects of fluctuating salinity on the behaviour of the west African blood clam Anadara senilus and on the osmotic and ionic concentrations of the haemolymph. Mar. Biol. 50: 209–213.Google Scholar
  16. Geller, W., 1984. A toxicity warning monitor using weakly electric fish, Gnathonemus petrsi. Wat. Res. 18: 1285–1290.Google Scholar
  17. Goldberg, E. D., V. T. Bowen, J. W. Farrington, G. Harvey, J. H. Martin, P. L. Parker, R. W. Risebrough, W. Robertson, E. Schneider & E. Gamble, 1978. The mussel watch. Environm. Conserv. 5: 101–125.Google Scholar
  18. Gruber, D. S. & J. M. Diamond, 1988. Automated biomonitoring — living sensors as environmental monitors. Ellis Horwood, Chichester, 208 pp.Google Scholar
  19. Higgins, P. J., 1980. Effects of food availability on the valve movements and feeding behaviour of juvenile Crassostrea virginica (Gmelin). I. Valve movements and periodic activity. J. Exp. Mar. Biol. Ecol., 45: 229–244.Google Scholar
  20. Hiscock, I. D., 1950. Shell movements of the freshwater mussel Hyridella australis Lam. (Lamellibranchiata). Aus. J. Mar. Freshwat. Res. 1: 260–268.Google Scholar
  21. Jenner, H. A., F. Noppert & T. Sikking, 1989. A new system for the detection of valve movement response of bivalves. KEMA scientific and technical report 1989–7–2. ISSN-0167–8590, KEMA, Arnhem, Netherlands. 7: 91–98.Google Scholar
  22. Juhnke, I. & W. K., 1971. Eine neue Testmethode zur Früherkennung akut toxischer Inhaltstoffen im Wasser. Gewaesser und Abwasser 50/51: 107–114.Google Scholar
  23. Knie, J., 1982. Der Daphnientest. Decheniana, 26: 82–86.Google Scholar
  24. Koeman, J. H., C. L. M. Poels & W. Slooff, 1978. Continuous biomonitoring systems for detection of toxic levels of water pollutants. In: O. Hutzinger, L. H. van Lelyveld & B. C. J. Zoeteman (eds.). Aquatic pollutants: transformation and biological effects. Pergamon, London, pp. 339–347.Google Scholar
  25. Kramer, K. J. M., J. J. Verburgh & E. M. Foekema, 1989. Response of Mytilus edulis to various chemical species of copper. Submitted to Marine Chemistry.Google Scholar
  26. Manley, A. R. & J. Davenport, 1979. Behavioural responses of some marine bivalves to heightened seawater copper concentrations. Bull. Envir. Contam. Toxicol. 22: 739–744.Google Scholar
  27. Manley, A. R., 1983. The effects of copper on the behaviour, respiration, filtration and ventilation activity of Mytilus edulis. J. Mar. Biol. Ass. U.K. 63: 205–222.Google Scholar
  28. Manley, A. R., L. L. D. Gruffydd & P. C. Almada-Villela, 1984. The effect of copper and zinc on the shell growth of Mytilus edulis measured by a laser diffraction technique. J. Mar. Biol. Ass. U.K. 64: 417–427.Google Scholar
  29. Marceau, F., 1909. Recherche sur la morphologie, et l'histologie, et la physiologie comparées des muscles adducteurs des mollusques acephales. Arch. Zool. Exp. Gén. (Ser 5), 2: 295–469.Google Scholar
  30. NAS, 1980. The international mussel watch. National Academy of Sciences, Washington DC, 148 pp.Google Scholar
  31. Noppert, F., 1987. Unio, een systemm voor het automatische regristratie en verwerken van klepbewegingsgedrag van bivalven. KEMA report 00610-MOA-1637 (in Dutch). 37 pp.Google Scholar
  32. Phillips, D. J. H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments — a review. Envir. Pollut. 13: 281–317.Google Scholar
  33. Phillips, D. H. J., 1980. Quantitative aquatic biological indicators. Pollution monitoring series. Applied Science Publ. London, 488 pp.Google Scholar
  34. Poels, C. L. M., 1977. An automatic system for rapid detection of acute high concentrations of toxic substances in surface water using trout. In: Cairns, Dickson & Westlake (Eds). Biological monitoring of water and effluent quality. pp. 85–95, ASTM, STP607.Google Scholar
  35. Sabourin, T. D. & R. E. Tullis, 1981. Effect of three aromatic hydrocarbons on respiration and heart rates of the mussel, Mytilus californianus. Bull. Envir. Contam. Toxicol. 26: 729–736.Google Scholar
  36. Salanki, J. & L. Balla, 1964. Ink-Lever equipment for continuous recording of activity in mussels. Annal. Biol. Tihany. 31: 117–121.Google Scholar
  37. Salanki, J. & F. Lukacsovics, 1967. Filtration and O2 consumption related to the periodic activity of freshwater mussel (Anodonta cygnea L.). Annal. Biol. Tihany, 34: 85–98.Google Scholar
  38. Salanki, J. & L. Varanka, 1976. Effect of copper and lead compounds on the activity of the fresh-water mussel. Annal. Biol. Tihany, 43: 21–27.Google Scholar
  39. Salanki, J. & L. Varanka, 1978. Effect of some insecticides on the periodic activity of the fresh-water mussel (Anodonta cygnea L.). Acta. Biol. Acad. Sci. Hung. 29: 173–180.Google Scholar
  40. Schuring, B. J. & M. J. Geense, 1972. Een electronische schakeling voor bet registreren van openingshoek van de mossel Mytilus edulis L. TNO-Rapport CL 72/47 (in Dutch). 8 pp.Google Scholar
  41. Slooff, W., D. de Zwart & J. M. Marquenie, 1983. Detection limits of a biological monitoring system for chemical water pollution based on mussel activity. Bull. Envir. Contam. Toxicol. 30: 400–405.Google Scholar
  42. Stephenson, R. R. & D. Taylor, 1975. The influence of EDTA on the mortality and burrowing activity of the clam (Venerupis decussata) exposed to sub lethal concentrations of copper. Bull. Envir. Contam. Toxicol. 14: 304–308.Google Scholar
  43. Widdows, J., D. K. Phelps & W. Galloway, 1981. Measurement of physiological condition of mussels transplanted along a pollution gradient in Narragansett Bay. Mar. Environm. Res. 4: 181–194.Google Scholar
  44. Widdows, J., 1973. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus edulis. Mar. Biol. 20: 269–276.Google Scholar
  45. Widdows, J., 1985. Physiological responses to pollution. Mar. Pollut. Bull. 16: 129–134.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Kees J. M. Kramer
    • 1
  • Henk A. Jenner
    • 2
  • Dick de Zwart
    • 3
  1. 1.Laboratory for Marine ResearchDen HelderThe Netherlands
  2. 2.Joint Laboratories and Consulting Services of the Dutch Electricity Supply Companies (KEMA)ArnhemThe Netherlands
  3. 3.National Institute of Public Health and Environmental Protection (RIVM)BilthovenThe Netherlands

Personalised recommendations