, Volume 116, Issue 1, pp 115–121 | Cite as

The mass culture of Dunaliella salina for fine chemicals: From laboratory to pilot plant

  • L. J. Borowitzka
  • M. A. Borowitzka
  • T. P. Moulton
Production and utilization of microalgae


β-carotene carotenogenesis Dunaliella mass culture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aasen, A. J., K. E. Eimhjellen & S. Liaaen-Jensen, 1969. An extreme source of β-carotene. Acta chem. Scand. 23: 2544–2545.Google Scholar
  2. Becker, E. W. & L. V. Venkataraman, 1980. Production and processing of algae in pilot plant scale experiences of the Indo-German project. In G. Shelef & C. J. Soeder (eds.), Algae Biomass. Elsevier/North-Holland Biomedical, Amsterdam: 35–50.Google Scholar
  3. Ben-Amotz, A. & M. Avron, 1980. Glycerol, β-carotene and dry algal meal production by commercial cultivation of Dunaliella. In G. Shelef & C. J. Soeder (eds.), Algae Biomass. Elsevier North-Holland Biomedical, Amsterdam: 603–610.Google Scholar
  4. Ben-Amotz, A., A. Katz & M. Avron, 1982. Accumulation of β-carotene in halotolerant algae: Purification and characterization of β-carotene-rich globules from Dunaliella bardawil Chlorophyceae). J. Phycol. 18: 529–537.Google Scholar
  5. Borowitzka, L. J., 1981. The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81: 33–46.Google Scholar
  6. Borowitzka, L. J. & A. D. Brown, 1974. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella: The role of glycerol as a compatible solute. Arch. Microbiol. 96: 37–52.Google Scholar
  7. Brown, A. D. & L. J. Borowitzka, 1979. Halotolerance of Dunaliella, In M. Levandowsky & S. H. Hutner (eds.), Biochemistry and Physiology of Protozoa, 2nd Edn. Academic Press, New York 1: 139–190.Google Scholar
  8. Burlew, J. D. (ed.), 1953. Algal culture - from laboratory to pilot plant. Carnegie Inst., Washington, D.C., Publ. 600: 375 pp.Google Scholar
  9. Chen, B. J. & C. H. Chi, 1981. Process development and evaluation for algal glycerol production. Biotechnol. Bioeng. 23: 1267–1287.Google Scholar
  10. Johnson, M. K., E. J. Johnson, R. D. MacElroy, H. L. Speer & B. S. Bruff, 1968. Effects of salts on the halophilic alga, Dunaliella viridis. J. Bacteriol. 95: 1461–1468.Google Scholar
  11. Kawaguchi, K., 1980. Microalgae production systems in Asia, In G. Shelef & C. J. Soeder (eds.), Algae Biomass, Elsevier/North-Holland Biomedical, Amsterdam: 25–33.Google Scholar
  12. Masyuk, N. P., 1968. Mass culture of the carotene bearing alga Dunaliella salina. Ukr. hot. Zh. 23: 12–19.Google Scholar
  13. Post. F. J., L. J. Borowitzka, M. A. Borowitzka, B. Mackay & T. Moulton, 1983. The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105: 95–113.Google Scholar
  14. Soeder, C. J., 1976. Zur Verwendung von Microalgan für Ernährungszwecke. Naturwissenschaften 63: 131–138.Google Scholar
  15. Williams, L. A., E. L. Foo, A. D. Foo, I. Kühn & C. G. Heden, 1978. Solar bioconversion systems based on algal glycerol production. Biotech. Bioeng. Symp. 8: 115–130.Google Scholar

Copyright information

© Dr W. Junk Publishers 1984

Authors and Affiliations

  • L. J. Borowitzka
    • 1
  • M. A. Borowitzka
    • 2
  • T. P. Moulton
    • 1
  1. 1.Roche Algal BiotechnologyMurdoch UniversityMurdochAustria
  2. 2.School of Environmental and Life SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations