Hydrobiologia

, Volume 180, Issue 1, pp 195–211 | Cite as

Pollution and tidal benthic communities of the James River Estuary, Virginia

  • Robert J. Diaz
Part Four: Community studies and population biology

Abstract

Distribution of benthic communities in the estuarine portion of the James River was controlled mainly by salinity. Pollution effects were localized and difficult to assess because of a rigorous physical environment. Mesohaline and oligohaline communities were very similar to those in other estuaries of the eastern United States. Macrobenthic densities were most severely depressed in tidal freshwater habitats near Richmond & Hopewell, where the major portion of the pollution load enters the river. Cluster analysis of species distributional patterns and ordination of pollution and physical parameters produced similar results, dividing the river into mesohaline, oligohaline, and upper and lower tidal freshwater zones. Further analysis of only the tidal freshwater portion indicated the distribution of benthic communities reflected the location and concentration of pollution sources along the river. Tidal freshwater communities were dominated by the Asiatic clam, Corbicula fluminea, tubificid oligochaetes of the genus Limnodrilus and the chironomid insect larva Coelotanypus scapularis. The fauna of the freshwater zones was very eurytopic with respect to sediment type and has a great resemblance to the fauna of eutrophic lakes. The classical concept of a sharp increase in number of species occurring from oligohaline to freshwater zones was found to be misleading. This increase does not occur until free flowing (or lotic) freshwater areas of greater habitat diversity are reached.

Keywords

estuaries tidal freshwater pollution impacts aquatic oligochaetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellanca, M. A. & D. S. Bailey, 1977. Effects of chlorinated effluents on aquatic ecosystem in the lower James River. J. Water Pollut. Cont. Fed. 49: 639–645.Google Scholar
  2. Bender, M. E., M. H. Roberts, R. Diaz & R. J. Huggett, 1977. Effects of residual chlorine on estuarine organisms. In L. D. Jensen (ed.). Biofouling control procedures. Marcel Dekker, Inc., New York 101–108.Google Scholar
  3. Boesch, D. F., 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Mar. Biol. 21: 226–244.Google Scholar
  4. Boesch, D. F., 1977. A new look at the zonation of benthos along the estuarine gradient. In B. C. Coull (ed.). Ecology of marine benthos. University of South Carolina Press, Columbia.Google Scholar
  5. Boesch, D. F., R. J. Diaz & R. W. Virstein, 1976. Effects of Tropical Storm Agnes on soft bottom macrobenthic communities of the James and York River estuaries and the bay mouth. Chesapeake Sci. 17: 246–259.Google Scholar
  6. Brinkhurst, R. O., 1967. The distribution of aquatic oligochaetes in Saginow Bay, Lake Huron. Limnol. Oceanogr. 2: 137–143.Google Scholar
  7. Brinkhurst, R. O., 1970. Distribution and abundance of tubificid (oligochaeta) species in Toronto Harbour, Lake Ontario. J. Fish. Res. Bd. Can. 27: 1961–1969.Google Scholar
  8. Brinkhurst, R. O., 1974. The benthos of lakes. St. Martin's Press, New York. 190 p.Google Scholar
  9. Brinkhurst, R. O. & D. G. Cook, 1974. Aqua tic earthworms (Annelida: Oligochaeta), In C. W. Hart, Jr. & S. L. H. Fuller (eds). Pollution ecology of freshwater invertebrates. Academic Press, New York: 143–156.Google Scholar
  10. Brinkhurst, R. O. & B. G. M. Jamieson, 1971. The aquatic oligochaeta of the world. Oliver and Boyd, Edinburg. 860 pp.Google Scholar
  11. Commonwealth of Virginia Water Control Board, 1972. James River comprehensive water quality management study. Vol. 7, parts 8 and 9. 190 pp.Google Scholar
  12. Commonwealth of Virginia Water Control Board, 1973. James River comprehensive water quality management study. Vol. 7, parts 6 and 7. 550 pp.Google Scholar
  13. Diaz, R. J., 1974. Asiatic clam, Corbicula manilensis (Philippi), in the tidal James River, Virginia. Chesapeake Sci. 15: 118–120.Google Scholar
  14. Dixon, W. J., 1968. Biomedical Computer Programs. University of California Press, Berkeley. 600 pp.Google Scholar
  15. Folk, R. L., 1968. Petrology of sedimentary rocks. Hamphill's, Austin. 170 pp.Google Scholar
  16. Goldstein, R. A. & D. F. Grigal, 1972. Computer programs for the ordination and classification of ecosystems. Oak Ridge Natl. Lab., Ecol. Soc. Div. Publ. 417.Google Scholar
  17. Goodall, D. W., 1973. Sample similarity and species correlation. In R. H. Whittaker (ed.). Ordination and classification of communities. Handb. Veg. Sci. 5, Junk, The Hague. 107–156.Google Scholar
  18. Grassle, J. F. & J. P. Grassle, 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. J. mar. Res. 32: 253–284.Google Scholar
  19. Gray, J. S., 1976. The fauna of the polluted River Tees Estuary. Estuar. Coast. Mar. Sci. 4: 653–676.Google Scholar
  20. Gray, J. S. & F. B. Mirza, 1979. A possible method for detection of pollution-induced disturbance on marine benthic communities. Mar. Pol. Bull. 10: 142–146.Google Scholar
  21. Guhl, W., 1987. Aquatic ecosystem characterizations by biotic indices. Int. Revue ges. Hydrobiol. 72: 431–455.Google Scholar
  22. Hart, C. W., Jr. & S. L. H. Fuller, 1974. Pollution ecology of freshwater invertebrates. Academic Press, New York, 389 pp.Google Scholar
  23. Holland, A. F., N. K. Mountford & J. A. Mihursky, 1977. Temporal variation in upper bay mesohaline benthic communities: I. The 9-m mud habitat. Chesapeake Sci. 18: 370–378.Google Scholar
  24. Johnson, M. G. & R. O. Brinkhurst, 1971. Associations and species diversity in benthic macroinvertebrates of Bay of Quinte and Lake Ontario. J. Fish. Res. Bd. Can. 28: 1699–1714.Google Scholar
  25. Johnson, M. G. & D. H. Matheson, 1968. Macroinvertebrate communities of Hamilton Bay and adjacent Lake Ontario. Limnol. Oceanogr. 13: 99–111.Google Scholar
  26. Jordan, R. A., R. K. Carpenter, P. A. Goodwin, C. G. Becker, M. S. Ho, G. C. Grant, B. B. Bryan, J. V. Merriner & A. D. Estes, 1976. Ecological study of the tidal segment of the James River encompassing Hog Point. Spec. Sci. Rep. 78, Virginia Institute of Marine Sciene, 321 pp.Google Scholar
  27. Kirk, W. L., 1974. Macroinvertebrates. In Virginia Institute for Scientific Research, Richmond, Virginia. The effects of thermal loading by the Bremo Power Station on a Piedmont section of the James River, Vol. I. Final Report for Virginia Electric and Power Company: 141–419.Google Scholar
  28. Koss, R. W., L. D. Jensen & R. D. Jones, 1974. Benthic invertebrates, p. 121–142. In L. D. Jensen (ed.). Environmental reponses to thermal discharges from the Chesterfield Station James River, Virginia. Cooling Water Studies for Electrical Power Research Institute, Research Project RP-49.Google Scholar
  29. Lafont, M., 1984. Oligochaete communities as biological descriptors of pollution in the fine sediments of rivers. Hydrobiologia 115: 127–130.Google Scholar
  30. Lance, G. N. & W. T. Williams, 1967. A note on a new divisive classificatory program for mixed data. Comput. J. 14: 154–155.Google Scholar
  31. Lang, C., 1984. Eutrophication of Lakes Leman and Neuchatel (Switzerland) indicated by oligochaete communities. Hydrobiologia 115: 131–138.Google Scholar
  32. Larsen, P. F., 1974. Quantitative studies of the macrofauna associated with the mesohaline oyster reefs of the James River, Virginia. Dissertation. College of William and Mary, Williamsburg, VA. 182 pp. Leppakoski, E., 1975. Assessment of degree of pollution on the basis of macrozoobenthos in marine and brackish- water environments. Acta Acad. Aboensis, ser. B 25: 1–90.Google Scholar
  33. Margalef, R., 1968. Perspectives in ecological theory. University of Chicago Press, Chicago, 111 pp.Google Scholar
  34. Massmann, W. H., 1954. Marine fishes in fresh and brackish waters of Virginia rivers. Ecology 35: 75–78.Google Scholar
  35. Mountford, N. K., A. F. Holland & J. A. Mihursky, 1977. Identification and description of macrobenthic communities in the Calvert Cliffs region of the Chesapeake Bay. Chesapeake Sci. 18: 360–369.Google Scholar
  36. Nichols, M. M., 1972. Sediments of the James River estuary, Virginia. Geol. Soc. Am. Mem. 133: 169–211.Google Scholar
  37. Nie, N. H., D. H. Bent & C. H. Hull, 1970. Statistical package for the social sciences. McGraw-Hill Book Co., New York. 343 pp.Google Scholar
  38. Odum, W. E., T. J. Smith, III, J. K. Hoover & C. C. McIvor, 1984. The ecology of tidal freshwater marshes of the United States east coast: A community profile. U.S. Fish Wildl. Serv. FWS/OBS-83/17. 177 pp.Google Scholar
  39. Orloci, L., 1973. Ordination by resemblance matrices. In R. H. Whittaker (ed.). Ordination and classification of communities. Handb. Veg. Sci. 5. Junk, The Hague. 249–286.Google Scholar
  40. Pearson, T. H. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 16: 229–311.Google Scholar
  41. Pfannkuche, O., H. Jelinek & E. Hartwig, 1975. Zur fauna eines susswasserwattes im Elbe-Aestuar. Arch. hydrobiol. 76: 475–498.Google Scholar
  42. Pfannkuche, O., 1980. Distribution and abundance of Tubificidae and Naididae (Oligochaeta) in a brackish-water fjord, with special reference to the mesohaline zone. Netherlands J. Sea Res. 14: 78–93.Google Scholar
  43. Pfannkuche, O., 1981. Distribution, abundance and life cycles of aquatic Oligochaeta (Annelida) in a freshwater tidal flat of the Ele Estuary. Arch. hydrobiol. Suppl. 43: 506–524.Google Scholar
  44. Pfitzenmeyer, H. T., 1970. Project C. Benthos. In Gross physical and biological effects of overboard spoil disposal in upper Chesapeake Bay. Natural Resources Inst. Spec. Rep. 3: 26–38.Google Scholar
  45. Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13: 131–144.Google Scholar
  46. Probst, L., 1987. Sublittoral and profundal Oligochaeta fauna from the Lake Constance (Bodensee-Obersee). Hydrobiologia 155: 277–282.Google Scholar
  47. Reish, D. J., 1957. The relationship of the polychaetous annelid Capitella capitata (Fabricius) to waste discharges of biological origin. In Biological problems in water pollution, C.M. Tarzwell (ed.). U.S. Public Health Ser., Washington: 145–200.Google Scholar
  48. Remane, A., 1934. Die Brackwasserfauna. Zool. Anz. Suppl. 7: Verhandl. Deut. Zod. Ges. 36: 34–74.Google Scholar
  49. Remane, A., 1971. Ecology of brackish water. Die Binnengewasser 25: 1–210.Google Scholar
  50. Rosenberg, R., 1973. Succession in benthic macrofauna in a Swedish fjord subsequent to the closure of a sulphite pulp mill, Oikos 24: 244–258.Google Scholar
  51. Sanders, H. L., P. C. Mangelsdorf, Jr. & G. R. Hampson, 1965. Salinity and faunal distribution in the Pocasset River, Massachusetts. Limnol. Oceonagr. 10 (Suppl.): 216–229.Google Scholar
  52. Schaffner, L. C., R. J. Diaz, C. R. Olsen &I. L. Larsen, 1987. Faunal characteristics and sediment accumulation processes in the James River estuary, Virginia. Estuar. Coast. Shelf Sci. 25: 211–226.Google Scholar
  53. Stephenson, W., W. T. Williams & S. D. Cook, 1972. Computer analyses of Petersen's original data on bottom communities. Ecol. Monogr. 42: 387–415.Google Scholar
  54. Tenore, K. R., 1972. Macrobenthos of the Pamlico River estuary, North Carolina. Ecol. Monogr. 42: 51–69.Google Scholar
  55. Verdonschot, P. F. M., 1987. Aquatic oligochaetes in ditches. Hydrobiologia 155: 283–292.Google Scholar
  56. Wass, M. L., 1967. Biological and physiological basis of indicator organisms and communities. Section II — indicators of pollution. In T. A. Olson & F. J. Burgess (eds), Pollution and Marine Ecology. Interscience, New York: 271–283.Google Scholar
  57. Wilhm, J. L. & T. C. Dorris, 1968. Biological parameters for water quality criteria. BioScience 18: 447–481.Google Scholar
  58. Wolff, W. J., 1972. Origin and history of the brackish water fauna of N.W. Europe. Fifth European Mar. Biol. Symp. Piccin Editore, Padova: 11–18.Google Scholar
  59. Woodiwiss, F. S., 1964. The biological system of stream classification used by the Trend Rivers Board. Chem. Industry 11: 443–447.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Robert J. Diaz
    • 1
  1. 1.Virginia Institute of Marine Science, School of Marine ScienceCollege of William and MaryVirginiaGloucester PointU.S.A.

Personalised recommendations