Hydrobiologia

, Volume 100, Issue 1, pp 93–99 | Cite as

Groundwater and stream ecology

  • H. B. N. Hynes
Article

Abstract

In the light of findings in recent years about the extent and nature of the hyporheal zone, the rate of uptake of organic matter by stream beds, and the fact that groundwater contains dissolved organic matter, it is suggested that stream ecologists should learn much more than they now know about groundwater. It seems probable that it is an important source of organic matter to the stream ecosystem which has escaped consideration to date.

Keywords

groundwater hyporheos organic matter absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, J. E., 1973. Observations on the vertical distribution of the benthos in a Malaysian stream. Freshwat. Biol. 3: 147–156.Google Scholar
  2. Bou, C. & Rouch, R., 1967. Un nouveau champ de recherches sur la faune aquatique souterraine. C. Acad. Sci. Paris D 265: 369–370.Google Scholar
  3. Bretschko, G., 1980. Vertical distribution of zoobenthos in an alpine brook of the Ritrodat-Lunz study area. Verh. int. Ver. Limnol. 21: 873–876.Google Scholar
  4. Coleman, M. J. & Hynes, H. B. N., 1970. The vertical distribution of the fauna in the bed of a stream. Limnol. Oceanogr. 15: 31–40.Google Scholar
  5. Danielpol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piesting (Austria). Int. J. Speleol. 8: 23–51.Google Scholar
  6. Danielpol, D. L., 1980. The role of the limnologist in groundwater studies. Int. Revue ges. Hydrobiol. Hydrogr. 65: 777–791.Google Scholar
  7. Ferrarese, U. & Samburgar, B., 1976. Ricerche sulla fauna interstitiale iporreica dell'Adige in relazione allo stato di inquinamente del fiume. Riv. Idrobiol. 15: 47–127.Google Scholar
  8. Fisher, S. G. & Likens, G. E., 1973. Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.Google Scholar
  9. Foster, S. S. D., Cripps, A. C. & Smith-Carington, A., 1982. Nitrate leaching to groundwater. Phil. Trans. Soc. Lond. 296: 477–489.Google Scholar
  10. Frape, S. K. & Fritz, P., 1982. The chemistry and isotopic composition of saline groundwaters from the Sudbury basin, Ontario. Can. J. Earth Sci. 19: 645–661.Google Scholar
  11. Frape, S. K. & Patterson, R. J., 1981. Chemistry of interstitial water and bottom sediments as indicators of patterns in Perch Lake, Chalk River, Ontario. Limnol. Oceanogr. 26: 500–517.Google Scholar
  12. Freeze, R. A. & Cherry, J. A., 1979. Groundwater. Prentice-Hall, Englewood, Cliffs, New Jersey, 604 pp.Google Scholar
  13. Godbout, L. & Hynes, H. B. N., 1982. The three dimensional distribution of the fauna in a single riffle in a stream in Ontario. Hydrobiologia 97: 87–96.Google Scholar
  14. Gourbault, N. & Lescher-Moutoué, F., 1968. Sur la faune hypogée peuplant le sous-écoulement d'une rivière de moyenne altitude. C. Acad. Sci. Paris D 265: 1813–1816.Google Scholar
  15. Hansen, E. A., 1975. Some effects of groundwater on brown trout redds. Trans. am. Fish. Soc. 104: 100–110.Google Scholar
  16. Husmann, S., 1966. Versuch einer ökologischen Gleiderung des interstitiellen Grundwassers in Lebensbereiche eigener Prägung. Arch. Hydrobiol. 62: 231–268.Google Scholar
  17. Husmann, S., 1971. Eine neue Methode zur Entnahme von Interstitialwasser aus subaquatischen Lockersteinen. Arch. Hydrobiol. 68: 519–527.Google Scholar
  18. Husmann, S., 1978. Die Bedeutung der Grundwasserfauna für biologische Reinigungsvorgänge im Interstitial von Lockergesteinen. ‘G W F’ Wass. Abwass. 119: 293–302.Google Scholar
  19. Hynes, H. B. N., 1970. The ecology of running waters. Liverpool University Press, Liverpool, 555 pp.Google Scholar
  20. Hynes, H. B. N., 1974. Further studies on the distribution of stream animals within the substratum. Limnol. Oceanogr. 19: 92–99.Google Scholar
  21. Hynes, H. B. N., 1975. The stream and its valley. Verb. int. Ver. Limnol. 19: 1–15.Google Scholar
  22. Hynes, H. B. N., Williams, D. D. & Williams, N. E., 1976. Distribution of the benthos within the substratum of a Welsh mountain stream. Oikos 27: 307–310.Google Scholar
  23. Johnson, R. A., 1980. Oxygen transport in salmon spawning gravels. Can. J. Fish. aquat. Sci. 37: 155–162.Google Scholar
  24. Kaplan, L. A. & Bott, T. L., 1982. Diel fluctuations of DOC generated by algae in a piedmont stream. Limnol. Oceanogr. 27: 1091–1100.Google Scholar
  25. Koboyashi, D., 1981. Separation of runoff components by stream temperature. Verh. Int. Verein. Limnol. 21: 150–154.Google Scholar
  26. Lee, D. R. & Cherry, J. A., 1978. A field exercise on groundwater flow using seepage meters and mini-piezometers. J. Geol. Educ. 27: 6–10.Google Scholar
  27. Lee, D. R. & Hynes, H. B. N., 1977/78. Identification of groundwater discharge zones in a reach of Hillman Creek in southern Ontario. Wat. Pollut. Res. Can. 13: 121–133.Google Scholar
  28. Lock, M. A., 1981. River epilithon — a light and energy transducer. In: Lock, M. A. & Williams, D. D. (Eds.) Perspectives in running water ecology. Plenum Press, New York, 430 pp. 3–40.Google Scholar
  29. Lock, M. A. & Hynes, H. B. N., 1975. The disappearance of four leaf leachates in a hard and soft water stream in South Western Ontario, Canada. Int. Revue ges. Hydrobiol. Hydrogr. 60: 847–855.Google Scholar
  30. Lock, M. A. & Hynes, H. B. N., 1976. The fate of ‘dissolved’ organic carbon derived from autumn-shed maple leaves (Acer saccharum) in a temperate hardwater stream. Limnol. Oceanogr. 21: 436–443.Google Scholar
  31. Lock, M. A., Wallace, R. R., Costerton, J. W., Ventullo, R. M. & Charlton, S. E., in press. River epilithon: toward a structural-functional model. Oikos.Google Scholar
  32. Lush, D. L. & Hynes, H. B. N., 1978a. Particulate and dissolved organic matter in a small partly forested stream. Hydrobiologia 60: 177–185.Google Scholar
  33. Lush, D. L. & Hynes, H. B. N., 1978b. The uptake of dissolved organic matter by a small spring stream. Hydrobiologia 60: 271–275.Google Scholar
  34. Manny, B. A. & Wetzel, R. G., 1973. Diurnal changes in dissolved organic and inorganic carbon and nitrogen in a headwater stream. Freshwat. Biol. 3: 31–43.Google Scholar
  35. McDowell, W. H. & Fisher, S. G., 1976. Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57: 561–569.Google Scholar
  36. Meŝtrov, M. & Lattinger-Penko, R., 1977/78. Ecological investigations of the influence of a polluted river on surrounding interstitial underground waters. Int. J. Speleol. 9: 331–355.Google Scholar
  37. Meŝtrov, M. & Lattinger-Penko, R., 1981. Investigation of the mutual influence between a polluted river and its hyporheic. Int. J. Speleol. 11: 159–171.Google Scholar
  38. Meŝtrov, M., Lattinger-Penko, R. & Tavcar, V., 1976. La dynamique de l'Isopode Proasellus slavus ssp. n. et les larves de Chironomides dans l'hyporhéique de la Drave du point de vue de la pollution. Int. J. Speleol. 8: 156–166.Google Scholar
  39. Morris, D. L. & Brooker, M. P., 1979. The vertical distribution of macroinvertebrates in the upper reaches of the River Wye, Wales. Freshwat. Biol. 9: 573–584.Google Scholar
  40. Naiman, R. G., 1982. Characteristics of sediment and organic carbon export from pristine boreal forest watersheds. Can. J. Fish. aquat. Sci. 39: 1699–1718.Google Scholar
  41. Newbold, J. D., Mulholland, P. J., Elwood, J. W. & O'Neill, R. V., 1982. Organic carbon spiralling in stream ecosystems. Oikos 38: 266–272.Google Scholar
  42. Ottaway, E. M., Carling, P. A., Clark, A. & Reader, N. A., 1981. Observations on the structure of brown trout, Salmo trutta Linnaeus, redds. J. Fish Biol. 19: 593–607.Google Scholar
  43. Poole, W. C. & Stewart, K. W., 1976. The vertical distribution of macrobenthos within the substratum of the Brazos River, Texas. Hydrobiologia 50: 151–160.Google Scholar
  44. Pugsley, C. W. & Hynes, H. B. N., in press. A modified freezecore technique to quantify the depth distribution of fauna in stony streambeds. Can. J. Fish. aquat. Sci. 40:Google Scholar
  45. Radford, D. S. & Hartland-Rowe, R., 1971. Subsurface and surface sampling of benthic invertebrates in two streams. Limnol. Oceanogr. 16: 114–120.Google Scholar
  46. Rounick, J. S., Winterbourn, M. J. & Lyon, G. L., 1982. Differential utilization of allochthonous and autochthonous inputs by aquatic invertebrates in some New Zealand streams: a stable carbon isotope study. Oikos 39: 191–198.Google Scholar
  47. Schwoerbel, J., 1961. Über die Lebensbedingungen und die Besiedlung des hyporheischen Lebensraumes. Arch. Hydrobiol. Suppl. 25: 181–214.Google Scholar
  48. Schwoerbel, J., 1967. Das hyporheische Interstitial als Grenzbiotop zwischen oberirdischem und subteränem Ökosystem und seine Bedeutung für die Primär-Evolution von Kleinsthöhlenbewohnern. Arch. Hydrobiol. Suppl. 33: 1–62.Google Scholar
  49. Sherr, E. B., 1982. Carbon isotope composition of organic seston and sediments in a Georgia salt marsh estuary. Geochim. cosmochim. Acta 46: 1227–1232.Google Scholar
  50. Sklash, M. G., Farvolden, R. N. & Fritz, P., 1976. A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer. Can. J. Earth Sci. 13: 271–283.Google Scholar
  51. Stanford, J. A. & Gaufin, A. R., 1974. Hyporheic communities of two Montana rivers. Science 185: 700–702.Google Scholar
  52. Štěrba, O., 1978. Stratifikation der Organismen in der Oberschicht der Sand kiessedimente unter der aktiven Strömung der Flüsse. Vešt. čsk. Spol. zool. 42: 60–68.Google Scholar
  53. Štěrba, O. & Holzer, M., 1977. Fauna de interstitiellen Gewässer der Sandkiessedimente unter der aktiven Strömung. Vešt. čsk. Spol. zool. 41: 144–159.Google Scholar
  54. Telang, S. A., Baker, B. L., Costerton, J. W., Ladd, T., Mutch, R., Wallis, P. M. & Hodgson, G. W., 1982. Biogeochemistry of mountain stream waters: the Marmot system. Scient. Ser. 101. Inland Waters Directorate, Ottawa, 101 pp.Google Scholar
  55. Vaux, W. G., 1962. Interchange of stream and intergravel water in a salmon spawning riffle. Spec. Sci. Publ., U.S. Fish Wildl. Serv., Fish. 405, 11 pp.Google Scholar
  56. Wallis, P. M., Hynes, H. B. N. & Telang, S. A., 1981. The importance of groundwater in the transportation of allochthonous dissolved organic matter to the streams draining a small mountain basin. Hydrobiologia 79: 77–90.Google Scholar
  57. Webster, D. A. & Eriksdotter, G., 1976. Upwelling water as a factor influencing choice of spawning sties by brook trout (Salvelinus fontinalis). Trans. am. Fish. Soc. 105: 416–421.Google Scholar
  58. Welton, J. A., Ladle, M., Bass, J. A. B. & Chapman, K., 1981. Invertebrate sampling in the substratum of an experimental recirculating stream. Int. Revue ges. Hydrobiol. Hydrogr. 66: 407–414.Google Scholar
  59. Whitman, R. L. & Clark, W. J., 1982. Availability of dissolved oxygen in interstitial waters of a sandy creek. Hydrobiologia 92: 651–658.Google Scholar
  60. Williams, D. D., 1976. Aquatic invertebrates inhabiting agricultural drainage tile systems in Ontario. Can. Fd. Nat. 90: 193–195.Google Scholar
  61. Williams, D. D. & Hynes, H. B. N., 1974. The occurrence of benthos deep in the substratum of a stream. Freshwat. Biol. 4: 233–256.Google Scholar
  62. Winograd, I. J. & Robertson, F. N., 1982. Deep oxygenated ground water: anomaly or common occurrence? Science 216: 1227–1230.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • H. B. N. Hynes
    • 1
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations