, Volume 49, Issue 2, pp 111–119 | Cite as

Multivariate analysis of variation among wild oat accessions — seed traits

  • A. Rezai
  • K. J. Frey


A sample of 457 (Avena sterilis L.) accessions from the World Oat Collection maintained at the Germplasm Laboratory, Beltsville, Maryland, USA, was studied by multivariate analyses to explain the phenotypic relationships among the entries. According to these analyses, patterns of seed trait associations suggest that diversity may have geographic patterning. For example, the accessions from countries and islands of the western Mediterranean tend to have a common set of traits. Number of spikelets per panicle and groat weight and dimensions were important traits that discriminated the A. sterilis accessions into the group. It was concluded that region-specific adaptations are responsible for occurrence of certain traits and trait associations in specific geographic regions.

Key words

Avena sterilis clustering analysis principal-component analysis canonical discriminate analysis geographic distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, D.E., L.S. Silvola, F.I. Collins & R.C. Rogers, 1967. Analysis of oil content of maize by wide-line NMR. J. Am. Oil Chem. Soc. 44 (10): 555–558.PubMedGoogle Scholar
  2. American Association for Cereal Chemists, 1962. AACC Approved Methods, 7 ed. Am. Assoc. of Cereal Chemists, St. Paul, MN.Google Scholar
  3. Ashri, A., D.E. Zimmer, A.L. Urie & P.F. Knowles, 1975. Evaluation of the germplasm collection of safflower (Carthamus tinctorius L.). VI. Length of planting to flowering period and plant height in Israel, Utah, and Washington. Theor. Appl. Gen. 46: 359–364.CrossRefGoogle Scholar
  4. Bartual, R., E.A. Carbonell & D.E. Green, 1985. Multivariate analysis of a collection of soybean cultivars for southeastern Spain. Euphytica 34: 113–123.Google Scholar
  5. Bhatt, E., 1976. An application of multivariate analysis to selection for quality characters in wheat. Aust. J. Agric. 27: 11–18.Google Scholar
  6. Broich, S.L. & R.G. Palmer, 1980. A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 29: 23–32.Google Scholar
  7. Christopher, W.Y., D. Kafton & G. Wilkes (Eds.), 1984. Plant Genetic Resources. A Conservation Imperative. AAAS Selected Symp. 87. Westview Press, Inc., Boulder, CO.Google Scholar
  8. Dale, M.F.B., B.V. Ford-Lloyd & M.H. Arnold, 1985. Variation in some agronomically important characters in a germplasm collection of beet (Beta vulgaris L.). Euphytica 34: 449–455.Google Scholar
  9. Frankel, O.H. & J.G. Hawkes (Eds), 1975. Crop Genetic Resources for Today and Tomorrow. Cambrdige Univ. Press, London.Google Scholar
  10. Frey, K.J., 1976. Plant breeding in the seventies, Useful genes from wild plant species. Egypt. J. Genet. Cytol. 5: 460–482.Google Scholar
  11. Frey, K.J., 1983. Genes from wild relatives for improving plants. pp. 1–20. In: T.C. Yap, K.M. Graham & Jalani Sukaimi (Eds), Crop Improvement Research. Proc. 4th Int. SABRAO Congr. Soc. Adv. Breed. Res. Asia Oceania, Bangi, Selangor, Malaysia.Google Scholar
  12. Frey, K.J., T.S. Cox, D.M. Rodgers & P. Bramel-Cox, 1984. Increasing cereal yields with genes from wild and weedy species. In: V.L. Chopra, B.C. Joshi, R.P. Sharma & H.C. Bansal (Eds), Genetics: New Frontiers. Proc. 15th Int. Genet. Congr., Oxford & IBH Publishing Co., New Delhi.Google Scholar
  13. Ghaderi, A., M. Shishkegar, A. Rezaie & B. Ehdaie, 1979. Multivariate analysis of genetic diversity for yield and its components in mung bean. J. Am. Soc. Hort. Sci. 104: 728–731.Google Scholar
  14. Goodman, M.M., 1973. Genetic distances: Measuring dissimilarities among populations. Yearb. of Phys. Anthropol. 17: 1–38.Google Scholar
  15. Harlan, J.R., 1975. Crops and Man. ASA and CSSA, Madison, WI.Google Scholar
  16. Hussanni, S.H., M.M. Goodman & D.H. Timothy, 1977. Multivariate analysis of the geographical distribution of the world collection of finger millet. Crop Sci. 17: 257–263.Google Scholar
  17. Jain, S.K., 1977. Genetic diversity of weedy rye populations in California. Crop Sci 17: 480–482.Google Scholar
  18. Jain, S.K. & R.S. Singh, 1972. Population biology of Avena. II. Isoenzyme polymorphisms in populations of the Mediterranean region and central California. Theor. Appl. Genet. 41: 79–84.Google Scholar
  19. Jain, S.K., C.O. Qualset, G.M. Bhatt & K.K. Wu, 1975. Geographical patterns of phenotypic diversity in a world collection of durum wheat. Crop. Sci. 15: 700–704.Google Scholar
  20. Kjellqvist, E., 1975. A regional plan for collection, conservation, and evaluation of genetic resources. pp. 455–465. In: O.H. Frankel & J.G. Hawkes (Eds), Crop genetic Resources for Today and Tomorrow. Cambridge Univ. Press, London.Google Scholar
  21. Kumar, J., P.N. Bahl & D.B. Raju, 1984. Variability in relation to geographic distribution in chickpea. Indian J.Genet. 44: 162–172.Google Scholar
  22. McCammon, R.B., 1968. The dendograph: A new tool for correlation. Geol. Soc. Am. Bull. 79: 1663–1670.Google Scholar
  23. McCammon, R.B. & G. Wenniger, 1970. The dendograph. Kans. State Geol. Surv. Comput. Contrib. 48: 1–27.Google Scholar
  24. Moseman, J.G. & J.C. Craddock, 1976. Genetic basis for collecting, evaluating and maintaining barley germplasm. pp. 51–57. In: H. Gaul (Ed.), Barley Genetics III. Proc. Intl. Barley Genetic. Symp.Google Scholar
  25. Munck, L., K.E. Karlson, W. Hagberg & B.O. Eggum, 1970. Gene for improved nutritional value in barley seed protein. Science 168: 985–987.PubMedGoogle Scholar
  26. Polignano, G.B. & P.L. Spagnoletti Zeuli, 1985. Variation and covariation in Vicia faba L. Populations of Mediterranean origins. Euphytica 39: 659–668.Google Scholar
  27. Porceddu, E., 1976. Variation for agronomical traits in a world collection of durum wheat. Z. Pflanzenzücht. 77 (4): 314–329.Google Scholar
  28. Rao, C.R., 1972. Recent trends of research world in multivariate analysis. Biometrics 22: 3–22.Google Scholar
  29. Rezai, A. & K.J. Frey, 1988. Variation in relation to geographical distribution in wild oats. Euphytica 39: 113–118.Google Scholar
  30. Sarle, W.S., 1985. PROC PRINCOMP and PROC CANDISC. In: SAS User's Guide: Statistics Ed. SAS Institute, Inc., Cary, NC.Google Scholar
  31. Simmonds, N.W. (Ed.), 1976. Evolution of crop plants. Longman, London.Google Scholar
  32. Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy. The Principles and Practice of Numerical Classification. W.H. Freeman and Company, San Francisco, CA.Google Scholar
  33. Vavilov, N.I., 1951. Phytogeographic basis of plant breeding. The origin, variation, immunity, and breeding of cultivated plants. Chron. Bot. 13: 1–366.Google Scholar
  34. Ward, D.J., 1962. Some evolutionary aspects of certain morphological characters in a world collection of barley. USDA Tech. Bull. 1276: 1–112.Google Scholar
  35. Whitehouse, R.N., 1970. Canonical analysis as an aid in plant breeding. pp. 269–282. In: R.A. Nilan (Ed.), Barley Genetics II. Washington State Univ. Press, Pullman, WA.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • A. Rezai
    • 1
  • K. J. Frey
    • 2
  1. 1.College of AgricultureIsfahan University of TechnologyIsfahanIran
  2. 2.Department of AgronomyIowa State UniversityAmesUSA

Personalised recommendations