Advertisement

Hydrobiologia

, Volume 138, Issue 1, pp 205–220 | Cite as

Patterns of temporal variation in Lake Titicaca. A high altitude tropical lake. I. Background, physical and chemical processes, and primary production

  • Peter J. Richerson
  • Patrick J. Neale
  • Wayne Wurtsbaugh
  • T. René Alfaro
  • Warwick Vincent
The Sub-tropics and Tropics

Abstract

A statistical analysis is presented of patterns of variation in some physical, chemical, and biological variables for a 6 year series of data from the tropical, high altitude Lake Titicaca (Peru-Bolivia). ANOVA techniques and autocorrelation analyses were used to partition the variance in Titicaca, and in some comparison tropical and temperate series, into components with repeatable annual cycles and components attributable to other kinds of patterns.

In Titicaca, insolation and stratification are highly seasonal in pattern of variation, although the amount of variance relative to means is small compared to temperate lakes. However, the seasonal pattern of physical variation is only weakly imposed on chemical and biological processes, to judge from analyses of silicate, oxygen, and primary production series. Comparable temperate series of primary production and chlorophyll a are much more seasonal.

Keywords

seasonality tropical lakes time series primary production alpine lakes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beadle, L. C., 1974. The inland waters of tropical Africa. Longman, London, 365 pp.Google Scholar
  2. Bindloss, M. E., 1974. Primary productivity of phytoplankton in Loch Leven, Kinross. Proc. R. Soc. Edinburgh (B) 74: 157–181.Google Scholar
  3. Boulangé, B. & E. Aquize Jr., 1981. Morphologie, hydrographie et climatologie du lac Titicaca et de son bassin versant. Rev. Hydrobiol. trop. 14: 269–287.Google Scholar
  4. Brylinsky, M. & K. H. Mann, 1973. An analysis of factors governing productivity in lakes and reservoirs. Limnol. Oceanogr. 18: 1–14.Google Scholar
  5. Burgis, M. J. & A. F. Walker, 1972. A preliminary comparison of the zooplankton in a tropical and a temperate lake (Lake George, Uganda, and Loch Leven, Scotland). Verh. int. Ver. Limnol. 18: 647–655.Google Scholar
  6. Carmouze, J. P., C. Arce & J. Quintanilla, 1977. La regulation hydrique des lacs Titicaca et Poopo. Cah. O.R.S.T.O.M., ser. Hydrobiol. 11: 269–283.Google Scholar
  7. Carmouze, J. P. & E. Aquize Jr. 1981. La regulation hydrique du lac Titicaca et l'hydrologie de ses tributaires. Rev. Hydrobiol. trop. 14: 311–328.Google Scholar
  8. Carney, H. J., 1984. Productivity, population growth, and physiological responses to nutrient enrichments by phytoplankton of Lake Titicaca, Peru-Boliva. Ver. int. Ver. Limnol. 22: 1253–1257.Google Scholar
  9. Dozier, B. J. & P. J. Richerson, 1975. An improved membrane filter method for the enumeration of phytoplankton. Ver. int. Ver. Limnol. 19: 1524–1529.Google Scholar
  10. Edmondson, W. T., 1972. The present condition of Lake Washington. Verh. int. Ver. Limnol. 18: 284–291.Google Scholar
  11. Frenguelli, J., 1939. Diatomeas del Lago Titicaca. Notas del Museo de la Plata 4: 175–196.Google Scholar
  12. Ganf, G. G., 1974. Phytoplankton biomass and distribution in a shallow eutrophic lake (Lake George, Uganda). Oecologia (Berl.) 16: 9–29.Google Scholar
  13. Ganf, G. G. & A. B. Viner, 1973. Ecological stability in a shallow equatorial lake (Lake George, Uganda). Proc. R. Soc. Lond. B 184: 321–346.Google Scholar
  14. Goldman, C. R., 1981. Lake Tahoe: Two decades of change in a nitrogen deficient oligotrophic lake. Verh. int. Ver. Limnol. 21: 45–70.Google Scholar
  15. Kirkish, M. & M. J. Taylor, 1984. Micrometeorological measurements at Lake Titicaca (Peru-Bolivia). Verh. int. Verh. Limnol. 22: 1232–1236.Google Scholar
  16. Kittel, T. & P. J. Richerson, 1978. The heat budget of a large tropical lake, Lake Titicaca (Peru-Bolivia). Verh. int. Ver. Limnol. 20: 1203–1209.Google Scholar
  17. Lazzaro, X., 1981. Biomasses, peuplement phytoplanctoniques et production primaire du lac Titicaca. Rev. Hydrobiol. trop. 14: 349–380.Google Scholar
  18. Lemoalle, J., 1973. L'activité photosynthétique du phytoplancton en relation avec le niveau des eaux du lac Tchad (Afrique). Verh. int. Ver. Limnol. 19: 1398–1403.Google Scholar
  19. Lewis, W. M., Jr., 1973. The thermal regime of Lake Lanao (Philippines) and its theoretical implications for tropical lakes. Limnol. Oceanogr. 18: 200–217.Google Scholar
  20. Lewis, W. M., Jr., 1974. Primary production in the plankton community of a tropical lake. Ecol. Monogr. 44: 377–409.Google Scholar
  21. Lewis, W. M., Jr., 1978. Analysis of succession in a tropical phytoplankton community and a new measure of succession rate. Am. Nat. 112: 401–414.Google Scholar
  22. Lewis, W. M., Jr., 1983. Temperature, heat, and mixing in lake Valencia, Venezuela. Limnol. Oceanogr. 28: 273–286.Google Scholar
  23. Lewis, W. M. Jr., 1984. A five-year record of temperature, mixing, and stability for a tropical lake (Lake Valencia, Venezuela). Arch. Hydrobiol. 99: 340–346.Google Scholar
  24. Lewis, W. M. Jr., 1986. Phytoplankton succession in Lake Valencia, Venezuela. In: M. Munawar & J. F. Talling, (eds), Seasonality of freshwater phytoplankton: a global perspective. Developments in Hydrobiology 138, 189–203. Junk.Google Scholar
  25. Lund, J. W. G., 1964. Periodicity and primary production of phytoplankton. Verh. int. Ver. Limnol. 15: 37–56.Google Scholar
  26. Melack, J. M., 1979. Temporal variability of phytoplankton in tropical lakes. Oecologia (Berl.) 44: 1–7.Google Scholar
  27. Melack, J. M. & P. Kilham, 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 19: 743–755.Google Scholar
  28. Mullin, M. M., P. R. Sloan & R. W. Eppley, 1966. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11: 307–311.Google Scholar
  29. Neale, P. J., 1984. Photoinhibition and the diurnal variation of phytoplankton photosynthesis in tropical, alpine Lake Titicac (Peru-Bolivia). Ph.D. Thesis, University of California, Davis, 164 pp.Google Scholar
  30. Platt, T. & K. L. Denman, 1975. Spectral analysis in ecology. Ann. Rev. Ecol. Syst. 6: 189–210.Google Scholar
  31. Powell, T. M., M. H. Kirkish, P. J. Neale & P. J. Richerson, 1984. The diurnal cycle of stratification in Lake Titicaca: eddy diffusion. Verh. int. Ver. Limnol. 22: 1237–1243.Google Scholar
  32. Powell, T. M. & P. J. Richerson, 1985. Temporal variation, spatial heterogeneity and competition for resources in plankton systems: a theoretical model. Am. Nat. 125: 431–464.Google Scholar
  33. Reynolds, C. S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.Google Scholar
  34. Richerson, P. J., C. Widmer & T. Kittel, 1977. The limnology of Lake Titicaca (Peru-Bolivia), a large, high altitude tropical lake. University of California, Davis, Institute of Ecology Publication No. 14, 78 pp.Google Scholar
  35. Richerson, P. J., C. Widmer, T. Kittel & A. Landa C., 1975. A survey of the physical and chemical limnology of Lake Titicaca. Verh. int. Ver. Limnol. 19: 1498–1503.Google Scholar
  36. Sellers, W. D., 1965. Physical climatology. University of Chicago Press, Chicago, Ill., 212 pp.Google Scholar
  37. Strickland, J. D. H. & T. J. Parsons, 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Canada 167, 311 pp.Google Scholar
  38. Talling, J. F., 1966. The annual cycle of stratification and phytoplankton growth in Lake Victoria (East Africa). Int. Rev. ges. Hydrobiol. 51: 545–621.Google Scholar
  39. Talling, J. F., 1969. The incidence of vertical mixing and some biological and chemical consequences in tropical African lakes. Verh. int. Ver. Limnol. 17: 998–1012.Google Scholar
  40. Taylor, M. & E. Aquize, 1984. A climatological energy budget of Lake Titicaca (Peru-Bolivia). Verh. int. Ver. Limnol. 22: 1246–1251.Google Scholar
  41. Theriot, E., H. J. Carney & P. J. Rioherson, 1985. Morphology, ecology, and systematics of Cyclotella andina sp. nov. (Bacillarophyceae) from Lake Titicaca, Peru-Bolivia. Phycologia, in press.Google Scholar
  42. Thomasson, K., 1956. Reflections on arctic and alpine lakes. Oikos 7: 117–143.Google Scholar
  43. Tutin, T. G., 1940. The algae. Report No. XI. In H. C. Gilson (ed.), Reports of the Percy Sladen Trust Expedition. Trans. Linn. Soc. Lond. 1 (Ser. 3): 191–202.Google Scholar
  44. Uéno, M., 1967. Zooplankton of Lake Titicaca on the Bolivian side. Hydrobiologia 29: 547–568.Google Scholar
  45. Vincent, W., W. Wurtsbaugh, C. L. Vincent & P. J. Richerson, 1984. Seasonal dynamics of nutrient limitation in a tropical high-altitude lake (Lake Titicaca, Peru-Bolivia): application of physiological bioassays. Limnol. Oceanogr. 29: 540–552.Google Scholar
  46. Vincent, W. F., C. L. Vincent, M. T. Downes & P. J. Richerson, 1985. Nitrate cycling in Lake Titicaca (Peru-Bolivia): the effects of high altitude and tropicality. Freshwat. Biol. 15: 31–42.Google Scholar
  47. Walter, H., 1979. Vegetation of the earth. Springer-Verlag, N.Y., 274 pp.Google Scholar
  48. Widmer, C., T. Kittel & P. J. Richerson, 1975. A survey of the biological limnology of Lake Titicaca. Verh. int. Ver. Limnol. 19: 1504–1510.Google Scholar
  49. Williams, N. J. & C. R. Goldman, 1975. Succession rates in lake phytoplankton communities. Verh. int. Ver. Limnol. 19: 808–811.Google Scholar
  50. Wurtsbaugh, W. A., W. F. Vincent, R. Alfaro, C., C. L. Vincent & P. J. Richerson, 1985. Nutrient limitation of algal growth and nitrogen fixation in a tropical alpine lake, Lake Titicaca (Peru-Bolivia). Freshwat. Biol. 15: in press.Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • Peter J. Richerson
    • 1
  • Patrick J. Neale
    • 1
  • Wayne Wurtsbaugh
    • 2
  • T. René Alfaro
    • 3
  • Warwick Vincent
    • 4
  1. 1.Institute of EcologyUniversity of CaliforniaDavisUSA
  2. 2.Department of Fisheries and WildlifeUtah State UniversutyLoganUSA
  3. 3.Lake Titicaca LaboratoryInstituto del Mar del PeruPunoPeru
  4. 4.Taupo Research LaboratoryDivision of Marine and Freshwater Studies, DSIRTaupoNew Zealand

Personalised recommendations