, Volume 197, Issue 1, pp 35–50 | Cite as

The evolution of saline lake waters: gradual and rapid biogeochemical pathways in the Basotu Lake District, Tanzania

  • Peter Kilham
  • Paul L. Cloke


The biogeochemical evolution of solutes markedly alters the chemistry in the closed-basin maar lakes that comprise the Basotu Lake District (Tanzania, East Africa). Examination of 11 (out of 13) lakes in the Basotu Lake District identified two distinct evolutionary pathways: a gradual path and a rapid path. During the course of biogeochemical evolution these waters follow either the gradual path alone or a combination of the gradual and rapid paths. Solute evolution along the gradual path is determined by all of the biogeochemical processes that for these waters appear to be tightly coupled to evaporative concentration (e.g. mineral precipitation, sorption and ion exchange, C02 degassing, and sulfate reduction). Rapid evolution occurs when mixing events suddenly permit H2S to be lost to the atmosphere. The chemistry of waters undergoing rapid evolution is changed abruptly because loss of every equivalent of sulfide produces an equivalent permanent alkalinity.

The Basotu Lake District in north central Tanzania is comprised of 13 maar lakes. They range in surface water conductivity from 592 to 24 000 µ S cm −1 (at 20°). Within these lake basins only a few of the variety of geo- and biogeochemical processes known to occur in lakes of this type are actually responsible for the gain and/or loss of individual solutes. For example, potassium appears to be taken up in the formation of illite. Calcium is precipitated as calcite. Magnesium interacts with alumino-silicate precursors to form a variety of clay minerals that contain magnesium (e.g. stevensite). This process is also known as reverse weathering. Sulfate is reduced to sulfide and subsequently lost as H2S and/or metal sulfides. Alkalinity is lost owing to calcite precipitation and as a consequence of reverse weathering. Alkalinity is gained in the form of extra permanent alkalinity when sulfide is lost from these waters (via metal sulfide precipitation or gaseous emission to the atmosphere). Rapid (punctuated) evolution can occur in any lake containing anoxic waters providing that mixing events take place which cause H2S to be lost to the atmosphere.

Key words

Saline lakes biogeochemistry geochemical evolution sulfate reduction CaC03 precipitation maars 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd-el-Malek, Y. & S. G. Risk, 1963. Bacterial sulfate reduction and the development of alkalinity. J. appl. Bact. 26: 20–26.Google Scholar
  2. Anderson, V. G., 1945. Some effects of atmospheric evaporation and transpiration on the composition of natural waters in Australia, 3. The waters of interior drainage catchments. J. Proc. Aust. chem. Inst. 12: 60–68.Google Scholar
  3. American Public Health Association, 1965. Standard methods for the examination of water and wastewater, APHA, N.Y., 769 pp.Google Scholar
  4. Arad, A. & W. H. Morton, 1969. Mineral springs and saline lakes of the western Rift Valley, Uganda. Geochim. cosmochim. Acta 33: 1169–1181.Google Scholar
  5. Beadle, L. C., 1981. The inland waters of tropical Africa. 2nd ed., Longman, London. 475 pp.Google Scholar
  6. Berner, R. A., 1971. Principles of chemical sedimentology. McGraw-Hill, New York.Google Scholar
  7. Carmouze, J.-P., 1983. Hydrochemical regulation of the lake. In dJ.-P. Carmouze, J.-R. Durand & C. Lévêque (eds.), Lake Chad, Ecology and Productivity of Shallow Tropical Ecosystem. Dr. W. Junk, The Hague: 95–123.Google Scholar
  8. Cerling, T. E., 1979. Paleochemistry of Plio-Pleistocene Lake Turkana, Kenya. Paleogeogr. Paleoclimatol. Paleoecol. 27: 247–285.Google Scholar
  9. Cook, R. B., 1984. Distributions of ferrous iron and sulfide in an anoxic hypolimnion. Can. J. Fish. aquat. Sci. 41: 286–293.Google Scholar
  10. Dawson, J. B., 1964. Carbonatitic volcanic ashes in Northern Tanganyika. Bull. volcan. 27: 81–91.Google Scholar
  11. Downie, C. & P. Wilkinson, 1962. The explosion craters of Basotu, Tanganyika Territory. Bull. volcan. 14: 389–420.Google Scholar
  12. Drever, J. I., 1988. The geochemistry of natural waters. 2nd ed. Prentice-Hall, Englewood Cliffs. 437 pp.Google Scholar
  13. Dunnette, D. I., D. P. Chynoweth& K. H. Mancy, 1985. The sources of hydrogen sulfide in anoxic sediment. Wat. Res. 19: 875–884.Google Scholar
  14. Eades, N. W. & W. H. Reeve, 1938. Explanation of the geology of degree sheet No. 29 (Singida). Bull. geol. Div. Tanganyika Dep. Lands Mines 11: 5–59.Google Scholar
  15. Eugster, H. P., 1970. Chemistry and origin of brines of Lake Magadi, Kenya. Spec. Pap. mineralog. Soc. Am. 3: 215–235.Google Scholar
  16. Eugster, H. P. & B. F. Jones, 1979. Behavior of major solutes during closed-basin brine evolution. Am. J. Sci. 279: 609–631.Google Scholar
  17. Eugster, H. P. & G. Maglione, 1979. Brines and evaporites of the Lake Chad basin, Africa. Geochim. cosmochim. Acta 43: 973–981.Google Scholar
  18. Folt, C. L., M. J. Wevers, M. P. Yoder-Williams& R. P. Howmiller, 1989. Field study comparing growth and viability of a population of phototrophic bacteria. Appl. envir. Microbiol. 55: 78–85.Google Scholar
  19. Gasse, F., J. F. Talling& P. Kilham, 1983. Diatom assemblages in East Africa: classification, distribution, and ecology. Revue Hydrobiol. trop. 16: 3–34.Google Scholar
  20. Garrels, R. M. & F. T. Mackenzie, 1967. Origin of the chemical composition of some springs and lakes. In Equilibrium Concepts in Natural Water Systems. Adv. Chem. Ser. 67: 222–242.Google Scholar
  21. Goldhaber, M. B. & I. R. Kaplan, 1974. The sulfur cycle. In E. D. Goldberg (ed.), The Sea, 5. Interscience, N.Y.: 569–655.Google Scholar
  22. Hardie, L. A. & H. P. Eugster, 1970. The evolution of closedbasin brines. Spec. Pap. mineralog. Soc. Am. 3: 273–290.Google Scholar
  23. Hecky, R. E. & P. Kilham, 1973. Diatoms in alkaline, saline lakes: Ecology and geochemical implications. Limnol. Oceanogr. 18: 53–71.Google Scholar
  24. Heinrich, E. W., 1966. The geology of carbonatites. Rand McNally & Co., Chicago.Google Scholar
  25. Holland, T. H. & W. A. K. Christie, 1909. The origin of the salt deposits of Rajputana. Rec. geol. Surv. India 38: 154–186.Google Scholar
  26. Hutchinson, G. E., 1957. A treatise on limnology, 1. J. Wiley & Sons, N.Y., 1015 pp.Google Scholar
  27. Jones, B. F., H. P. Eugster& S. L. Rettig, 1977. Hydrogeochemistry of the Lake Magadi basin, Kenya. Geochim. cosmochim. Acta 41: 53–72.Google Scholar
  28. Jones, B. F. & A. H. Weir, 1983. Clay minerals of Lake Abert, an alkaline, saline lake. Clays Clay Mineral. 31: 161–172.Google Scholar
  29. Kilham, P., 1971a. The geochemical evolution of closed basin lakes. Abstrs. Progms. geol. Soc. Am. 3(7): 770–772.Google Scholar
  30. Kilham, P., 1971b. Biogeochemistry of African lakes and rivers. Ph.D. thesis, Duke Univ., Durham (N.C.), 199 pp.Google Scholar
  31. Kilham, P., 1984. Sulfate in African inland waters: sulfate to chloride ratios. Verh. int. Ver. Limnol. 22: 296–302.Google Scholar
  32. Kilham, P. & R. E. Hecky, 1973. Fluoride: Geochemical and ecological significance in East African waters and sediments. Limnol. Oceanogr. 18: 932–945.Google Scholar
  33. King, D. L., J. J. Simmler, C. S. Decker& C. W. Ogg, 1974. Acid strip mine lake recovery. J. Wat. Pollut. Cont. Fed. 46: 2301–2316.Google Scholar
  34. Kling, G. W., 1987. Seasonal mixing and catastrophic degassing in tropical lakes, Cameroon, West Africa. Science 237: 1022–1024.Google Scholar
  35. MacIntyre, S. & J. M. Melack, 1982. Meromixis in an equatorial African soda lake. Limnol. Oceanogr. 27: 595–609.Google Scholar
  36. Mackereth, F. J. H., 1963. Some methods of water analysis for limnologists. Scient. Publ. Freshwat. biol. Ass. 21. 71 p.Google Scholar
  37. Müller, G., G. Irion& U. Förstner, 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.Google Scholar
  38. Nürnberg, G., 1984. Iron and hydrogen sulfide interference in the analysis of soluble reactive phosphorus in anoxic waters. Wat. Res. 18: 369–377.Google Scholar
  39. Pappe, A. & H. D. Richmond, 1890. A Central African salt lake. J. Soc. chem. Ind. Lond. 9: 734.Google Scholar
  40. Perkin-Elmer, 1964. Analytical methods for atomic absorption spectrophotometry. Perkin-Elmer, Norwalk. Looseleaf, unpaginated.Google Scholar
  41. Prosser, M. V., R. B. Wood& R. M. Baxter, 1968. the Bishoftu crater lakes: A bathymetric and chemical study. Arch. Hydrobiol. 65: 309–324.Google Scholar
  42. Rodhe, H. & H. Virji, 1976. Trends and periodicities in East African rainfall data. Mon. Weath. Rev. U.S. Dep. Agric. 104: 307–315.Google Scholar
  43. Ruttner, F., 1931. Hydrographische and hydrochemische Beobachtungen auf Java, Sumatra and Bali. Arch. Hydrobiol. Suppl. 8: 197–454.Google Scholar
  44. Singer, A. & P. Stoffers, 1980. Clay mineral diagenesis in two East African lake sediments. Clay Mineral. 15: 291–307.Google Scholar
  45. Stanley, H. M., 1890. In darkest Africa, 2. Charles Scribner's Sons, N.Y., 540 pp.Google Scholar
  46. Talling, J. F. & I. B. Talling, 1965. The chemical composition of African lake waters. Int. Revue ges. Hydrobiol. 50: 421–463.Google Scholar
  47. Truesdell, A. H. & B. F. Jones, 1974. WATEQ, a computer program for calculating chemical equilibria of natural waters. J. Res. U.S. geol. Serv. 2: 233–248.Google Scholar
  48. Von Damm, K. L. & J. M. Edmond, 1984. Reverse weathering in the closed-basin lakes of the Ethiopian Rift and in Lake Turkana (Kenya). Am. J. Sci. 284: 835–862.Google Scholar
  49. Wood, R. B. & J. F. Talling, 1988. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158: 29–67.Google Scholar
  50. Yuretich, R. G. & T. E. Cerling, 1983. Hydrogeochemistry of Lake Turkana, Kenya: Mass balance and mineral reactions in an alkaline lake. Geochim. cosmochim. Acta 47: 1099–1109.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Peter Kilham
    • 1
  • Paul L. Cloke
    • 2
  1. 1.Department of Biology and the Center for Great Lakes and the Aquatic SciencesThe University of MichiganAnn ArborUSA
  2. 2.Department of Geological SciencesThe University of MichiganAnn ArborUSA

Personalised recommendations