Advertisement

Hydrobiologia

, Volume 275, Issue 1, pp 391–410 | Cite as

A diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England

  • Helen Bennion
Nutrient Dynamic, Internal Loading

Abstract

Shallow ponds in southeast England are often eutrophic with high phosphorus concentrations. The aim of this study was to develop a diatom-phosphorus ‘transfer function’ to enable past phosphorus levels in such waters to be inferred from the sediment record. A water chemistry survey of 123 randomly chosen, shallow, artificial ponds in southeast England was carried out. Principal components analysis (PCA) revealed that phosphorus was an important environmental variable. A subset of 31 sites was selected along a total phosphorus (TP) gradient (winter TP range 7–1123 µg 1-1), in order to explore the relationship between the surface-sediment diatom assemblages and the contemporary water chemistry using canonical correspondence analysis (CCA). Annual mean TP was the most significant variable in explaining the variance in the diatom species data.

Weighted averaging (WA) regression and calibration techniques were used to generate a transfer function, enabling annual mean TP (range 25–646 µg 1-1) to be inferred from the diatom species TP optima of 102 common taxa in the dataset (r2 = 0.79; RMSE = 0.161; RMSE(boot) = 0.279; n = 30). The model was applied to fossil diatom assemblages in a sediment core from Marsworth Reservoir, Hertfordshire, a Site of Special Scientific Interest (SSSI), with currently high TP levels of 476 µg 1-1, to reconstruct past epilimnetic annual mean TP concentrations.

The study shows that artificial, shallow waters can be suitable for palaeolimnological research and that it is possible to reliably infer lake water TP using the WA technique, across a large range of phosphorus concentrations. This method has the potential to provide limnologists, conservationists and water quality managers with an estimate of pre-enrichment phosphorus concentrations and an indication of the onset and development of eutrophication at a site. This information is essential for lake management strategies and restoration programmes.

Key words

diatoms phosphorus palaeolimnology transfer function United Kingdom shallow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbeti, M. 1992. The relationship between diatom assemblages and trophic variables: a comparison of old and new approaches. Can. J. Fish. aquat. Sci. 49: 1171–1175.Google Scholar
  2. Agbeti, M. & M. Dickman, 1989. Use of lake fossil diatom assemblages to determine historical changes in trophic status. Can. J. Fish. aquat. Sci. 46: 1013–1021.Google Scholar
  3. Anderson, N. J., 1989. A whole-basin diatom accumulation rate for a small eutrophic lake in Northern Ireland and its palaeoecological implications. J. Ecol. 77: 926–946.Google Scholar
  4. Anderson, N. J., 1990. The biostratigraphy and taxonomy of small Stephanodiscus and Cyclostephanos species (Bacillariophyceae) in a eutrophic lake, and their ecological implications. Br. phycol. J. 25: 217–235.Google Scholar
  5. Anderson, N. J., 1993. Inferring diatom palaeoproduction and lake trophic status from fossil diatom assemblages. Proc. Calif. Acad. Sci., in press.Google Scholar
  6. Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253/Dev. Hydrobiol. 84: 357–366.Google Scholar
  7. Anderson, N. J., B. Rippey & A. C. Stevenson, 1990. Diatom assemblage changes in a eutrophic lake following point source nutrient re-direction: a palaeolimnological approach. Freshwat. Biol. 23: 205–217.Google Scholar
  8. Appleby, P. G. & F. Oldfield, 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.Google Scholar
  9. Appleby, P. G., P. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 141/Dev. Hydrobiol. 36: 21–27.Google Scholar
  10. Bailey-Watts, A. E., A. Kirika, L. May & D. H. Jones, 1990. Changes in phytoplankton over various time scales in a shallow, eutrophic lake: the Loch Leven experience with special reference to the influence of flushing rate. Freshwat. Biol. 23: 85–111.Google Scholar
  11. Battarbee, R. W., 1978. Observations on the recent history of Lough Neagh and its drainage basin. Phil. Trans. r. Soc., Lond. 281: 303–345.Google Scholar
  12. Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. r. Soc., Lond. 305: 451–477.Google Scholar
  13. Battarbee, R. W., 1986. Diatom analysis. In B. E. Berglund (ed.), Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester: 527–570.Google Scholar
  14. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 27: 184–188.Google Scholar
  15. Bennion, H., (1993). A diatom-phosphorus transfer function for eutrophic ponds in south-east England. Unpublished PhD, University College London.Google Scholar
  16. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. Ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc., Lond., series B 327: 263–278.Google Scholar
  17. Bradbury, J. P., 1975. Diatom stratigraphy and human settlement in Minnesota. Geol. Soc. Am. Special Paper 171: 74 pp.Google Scholar
  18. Camburn, K. E., J. C. Kingston & D. F. Charles (eds), 1984–1986. PIRLA Diatom Iconograph. Unpublished Report Series, Report 3. Indiana University, Bloomington, USA.Google Scholar
  19. Canter, H. M. & J. W. G. Lund, 1953. Studies on plankton parasites II. The parasitism of diatoms with special reference to lakes in the English Lake District. Trans. br. mycol. Soc. 36: 13–37.Google Scholar
  20. Cleve-Euler, A., 1951–1955. Die diatomeen von Schweden und Finnland. Kungl. Svenska Vet. Handlinger, Almqvist & Wiksell, Stockholm.Google Scholar
  21. Department of the Environment, National Water Council, 1982. Methods for the examination of waters and associated materials: Oxidised nitrogen in waters 1981. HMSO, London: 42–48.Google Scholar
  22. Efron, B., 1982. The jackknife, the bootstrap, and other resampling methods. Society for Industrial and Applied Mathematics, CBMS-NSF Monograph 38.Google Scholar
  23. Flower, R. J., 1986. The relationship between surface sediment diatom assemblages and pH in 33 Galloway Lakes: some regression models for reconstructing pH and their application to sediment cores. Hydrobiologia 143/Dev. Hydrobiol. 37: 93–103.Google Scholar
  24. Gibson, C. E., 1984. Sinking rates of planktonic diatoms in an unstratified lake: a comparison of field and laboratory observations. Freshwat. Biol. 14: 631–638.Google Scholar
  25. Håkansson, H., 1986. A taxonomic reappraisal of some Stephanodiscus species (Bacillariophyta). Br. phycol. J. 21: 25–37.Google Scholar
  26. Håkansson, H. & H. Kling, 1990. The current status of some very small freshwater diatoms of the genera Stephanodiscus and Cyclostephanos. Diatom Research 5: 273–287.Google Scholar
  27. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.Google Scholar
  28. Harriman, R., R. Gillespie, D. King, A. W. Watt, A. E. G. Christie, A. A. Cowan & T. Edwards, 1990. Short-term ionic responses as indicators of hydrochemical processes in the Allt A' Mharcaidh catchment, Western Cairngorms, Scotland. J. Hydrology 116: 267–285.Google Scholar
  29. Hartley, B., 1986. A check-list of the freshwater, brackish and marine diatoms of the British Isles and adjoining coastal waters. J. mar. biol. Ass. U.K. 66: 531–610.Google Scholar
  30. Hustedt, F., 1930–1966. Die Kieselalgen Deutschlands, Österreichs und der Schweiz mit Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebiete. Kryptogamen-Flora 7 Vol. 1 (1927–1930), 2 (1937–1959), 3 (1961–1966). Geest and Portig, Leipzig.Google Scholar
  31. Jones, D. K. C., 1981. The Geomorphology of the British Isles: Southeast and Southern England. Methuen, London, 332 pp.Google Scholar
  32. Juggins, S. & C. J. F. ter Braak, 1993. CALIBRATE Version 1.0. Environmental Change Research Centre, University College London.Google Scholar
  33. Kajak, Z., 1966. Field experiment in studies on benthos density of some Mazurian lakes. Gewässer und Abwässer 41/42: 150–158.Google Scholar
  34. Kilham, S. S., 1975. Kinetics of silica-limited growth in the freshwater diatom Asterionella formosa. J. Phycol. 11: 396–399.Google Scholar
  35. Kingston, J. C., H. J. B. Birks, A. J. Uutala, B. F. Cumming & J. P. Smol, 1992. Assessing the trends in fishery resources and lake water aluminium from palaeolimnological analyses of siliceous algae. Can. J. Fish. aquat. Sci. 49: 127–138.Google Scholar
  36. Krammer, K. & H. Lange-Bertalot, 1986. Süsswasserflora von Mitteleuropa. Bacillariophyceae. 1. Teil: Naviculaceae. Gustav Fischer Verlag, Stuttgart, 876 pp.Google Scholar
  37. Line, J. M. & H. J. B. Birks, 1990. WACALIB version 2.1 — a computer program to reconstruct environmental variables from fossil diatom assemblages by weighted averaging. J. Palaeolimnol. 3: 170–173.Google Scholar
  38. Linc, J. M., C. J. F. ter Braak & H. J. B. Birks, 1991. WACALIB version 3.0, unpublished program.Google Scholar
  39. Livingstone, D. A., 1955. A lightweight piston sampler for lake deposits. Ecology 36: 137–139.Google Scholar
  40. Lund, J. W. G., 1959. Buoyancy in relation to the ecology of freshwater phytoplankton. Br. phycol. Bull. 1: 1–17.Google Scholar
  41. Marker, A. F. H., 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwat. Biol. 2: 361–385.Google Scholar
  42. Martens, H. & T. Naes, 1989. Methods for calibration. In Martens, H. & T. Naes, Multivariate Calibration. Wiley & Sons, Chichester: 73–85.Google Scholar
  43. Murphy, J. & J. P. Riley, 1962. A modified single-solution method for the determination of phosphate in natural waters. Analyt. chim. Acta 27: 31.Google Scholar
  44. Organisation for Economic Co-operation and Development, OECD., 1982. Eutrophication of waters: monitoring, assessment and control. OECD, Paris: 154 pp.Google Scholar
  45. Patrick, R. & C. Reimer, 1966. The Diatoms of the United States, Vol. 1. Academy of Natural Sciences, Philadelphia, Monograph 3: 1–668.Google Scholar
  46. Patrick, R. & C. Reimer, 1975. The Diatoms of the United States, Vol. 2, Part 1. Academy of Natural Sciences, Philadelphia, Monograph 13: 1–213.Google Scholar
  47. Reynolds, C. S., 1973. The seasonal periodicity of planktonic diatoms in a shallow eutrophic lake. Freshwat. Biol. 3: 89–110.Google Scholar
  48. Smol, J. P., 1992. Paleolimnology: an important tool for effective ecosystem management. Journal of Aquatic Ecosystem Health 1: 49–58.Google Scholar
  49. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind exposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.Google Scholar
  50. Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-water Chemistry Data-set. ENSIS Publishing, London, England.Google Scholar
  51. Stockner, J. G. & W. W. Benson, 1967. The succession of diatom assemblages in the recent sediments of Lake Washington. Limnol. Oceanogr. 12: 513–532.Google Scholar
  52. Stoermer, E. F. & H. Håkansson, 1984. Stephanodiscus parvus: validation of an enigmatic and widely misconstrued taxon. Nova Hedwigia 39: 497–511.Google Scholar
  53. Stoermer, E. F., H. Håkansson & E. C. Theriot, 1987. Cyclostephanos species newly reported from North America: C. tholiformis sp. nov. and C. costalimbus comb. nov. Br. phycol. J. 22: 349–358.Google Scholar
  54. Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analyses. Bull. Fish. Res. Bd. Can. 167, second edition.Google Scholar
  55. ter Braak, C. J. F., 1987a. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.Google Scholar
  56. ter Braak, C. J. F., 1987b. CANOCO — a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis andredundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Wageningen, 95 pp.Google Scholar
  57. ter Braak, C. J. F., 1990. Update notes: CANOCO verssion 3.10. Agricultural Mathematics Group, Wageningen, 35 pp.Google Scholar
  58. ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.Google Scholar
  59. Theriot, E. C., E. F. Stoermer & H. Håkansson, 1987. Taxonomic interpretation of the rimoportula of freshwater genera in the centric diatom family Thalassiosiraceae. Diatom Research 2: 251–265.Google Scholar
  60. Vanni, M. J. & J. Temte, 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnol. Oceanogr. 35: 697–709.Google Scholar
  61. Whitmore, T. J., 1989. Florida diatom assemblages as indicators of lake trophic state and pH. Limnol. Oceanogr. 34: 882–895.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Helen Bennion
    • 1
  1. 1.Environmental Change Research Centre, Department of GeographyUniversity College LondonLondonUnited Kingdom

Personalised recommendations