, Volume 113, Issue 1, pp 231–242 | Cite as

Tropical lakes — functional ecology and future development:. The need for a process-orientated approach

  • Jens Petter Nilssen


The major classes of tropical lakes include shallow, lowland lakes; deep, tertiary lakes; high altitudinal lakes; rainforests lakes; and man-made lakes at all latitudes and altitudes. Basic ecological processes are similar in temperate and tropical lakes, including grazing, competition, predation and abiotic adaptation. Small tropical lakes of intermediate age are probably not biotically more complicated than similar-sized temperate lakes. The structure of the areas of adaptative radiation and the dispersal ability of the species are important for the present distribution of taxa. Fish play a key role in the tropics since many species both consume zooplankton and compete with them for algal and pelagic sestonic food. This important co-evolution between fish and algae, leaving a fraction of the algal community with a predation refuge, may have decreased the ability of zooplankton to exploit algae. In addition, heavy predation from juvenile and adult fish may greatly simplify the zooplankton community, and have resulted in the scarcity of Cladocera, notably the efficient filter-feeder Daphnia. Little is known of possible physiological constraints to cladoceran distribution, however. Thus similar co-evolution as hypothesized between fish and algae seems not to have occurred to such a great extent between fish and zooplankton. Diurnal patterns in habitat selection of fish may also influence nutrient re-distribution in the tropics as in many temperate lakes. Serious environmental problems threaten tropical lakes, including eutrophication, clear-cutting of the rain forest, unwise introduction of new species not adapted to prevailing conditions, overfishing, extensive use of biocids, and probably acidic rain in areas with poorly buffered waters. Important processes in tropical lakes could be elucidated by concentrating research upon the fate of phytoplankton successional production, involving competition, grazing, sinking, fungi and bacterial attack. Co-evolution of fish and algae should be further investigated as it could in part explain the general scarcity and simplicity of the zooplankton community. Limnocorral experiments should also be used for further assessing processes in tropical lakes.


tropical zooplankton lake typology planktivorous fish evolutionary ecology life histories photyplankton loss rates environmental problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.Google Scholar
  2. Ackermann, W. C., G. F. White, E. B. Worthington & J. L. Ivens, (eds.), 1973. Man-made lakes: Their problems and environmental effects. Geophys. Monogr. Am. Geophys. Un. William Byrd Press, Richmond, Virginia 17: 1–847.Google Scholar
  3. Beadle, L. C., 1974. The inland waters of tropical Africa, 2nd Edn. 1981. Longman, Lond., 475 pp.Google Scholar
  4. Brandorff, G-O, 1977. Untersuchungen zur Populationsdynamik des Crustaceenplanktons in tropischen Lago Castanho (Amazonas, Brasilien). Thesis, Univ. Kiel, 108 pp.Google Scholar
  5. Carvalho, M. L., 1982a. Influence of predation by fish and turbidity on Daphnia gessneri in an Amazonian flood-plain lake, Brazil. This volume.Google Scholar
  6. Carvalho, M. L., 1982b. Efeitos de flutuação do nivel da água sobre a densidade e composiçâo do zooplânkton de várzea de Amazônia, Brasil. Acta Amazoniaa, in press.Google Scholar
  7. Champeau, A., 1971. Recherches sur l'adaptation a la vie latente des Copépodes Cyclopoïdes et Harpacticoïdes des eaux temporaires Procençales. Bull. Soc. Ecol. 2: 151–167.Google Scholar
  8. Coveney, M. F., G. Cronberg, M. Enell, K. Larsson & L. Olofsson, 1977. Phytoplankton, zooplankton and bacteria-standing crop and production relationship in a eutrophic lake. Oikos 29: 5–21.Google Scholar
  9. De Moraes, E. de M., 1978. Ciclo sazonal, distribuição horizontal e vertical e interrelações ecológicas de nutrientes na Represa do Lobo (Brotas — Itirapina — SP). Thesis, Univ. São Paulo, 153 pp.Google Scholar
  10. Denny, P., 1972. The significance of the pycnocline in tropical lakes. Afr. J. Trop. Hydrobiol. Fish. 2: 85–89.Google Scholar
  11. Duncan, A., 1982. An assessment of factors influencing the composition, body size and turnover rate of the zooplankton in Parakrama Samudra, an irrigation reservoir in Sri Lanka. This volume.Google Scholar
  12. Dos Santos, L. C., 1980. Estudo das populações de Cladocera em cinco lagos naturais (Parque Florestal do Rio Doce — MG), que se encontram em diferentes estágios de evolução. Thesis, Univ. Fed. Sao Carlos, 260 pp.Google Scholar
  13. Farnworth, E. G. & F. B. Golley (eds.), 1973. Fragile ecosystems. Evaluation of research and applications in the neotropics. Inst. Ecol. Springer-Verlag, Berlin, 258 pp.Google Scholar
  14. Ferguson, A. J. D., J. M. Thompson & C. S. Reynolds, 1982. Structure and dynamics of zooplankton communities maintained in closed systems, with special reference to algal food supply. J. Plankton Res. 4: 523–543.Google Scholar
  15. Fernando, C. H., 1980. Some important implications for tropical limnology. In Promotion of limnology in developing countries. First Workshop Kyoto, 1980: 103–107.Google Scholar
  16. Fryer, G. & T. D. Iles, 1972. The cichlid fishes of the great lakes of Africa: their biology and evolution. Oliver & Boyd, Edingb., 641 pp.Google Scholar
  17. Gliwicz, Z. M., 1975. Effect of zooplankton grazing on photosynthetic activity and composition of phytoplankton. Verh. int. Ver. Limnol. 19: 1490–1497.Google Scholar
  18. Gliwicz, Z. M. & A. Hillbricht-Ilkowska, 1975. Ecosystem of the Mikolajskie Lake. Elimination of phytoplankton biomass and its subsequent fate through the year. Pol. Arch. Hydrobiol. 22: 39–52.Google Scholar
  19. Goldman, C. R., 1979. Ecological aspects of water impoundment in the tropics. Unasylva, FAO 31(123): 2–11.Google Scholar
  20. Gophen, M., 1982. The impact of zooplankton status on the management of Lake Kinneret (Israel). This volume.Google Scholar
  21. Gras, R., A. Iltis & L. Saint-Jean, 1971. Biologie des Crustacés du lac Tchad, 2. Régime alimentaire des Entomostracés planctonique. Cah. O.R.S.T.O.M., Sér. Hydrobiol. 5: 285–296.Google Scholar
  22. Green, J., S. A. Corbet & L. Betney, 1974. Ecological studies on crater lakes in West Cameroon. Debundsha Lake. J. zool. Soc. Lond. 173: 199–223.Google Scholar
  23. Hardy, E. R., 1978. Composição do zooplancton em cinco lagos da Amazônia Central. Thesis, Univ. Fed. São Carlos, 143 pp.Google Scholar
  24. Hebert, P., 1978. The population biology of Daphnia (Crustacea, Daphnidae). Biol. Rev. 53: 387–426.Google Scholar
  25. Hessen, D., 1982. Eksperimentelle innhegningsforsøk i Gjersjøen med spesiell vekt på zooplanktonets relasjon tit fytoplankton bakterier og planktivor fisk. Thesis, Univ. Oslo, (in Norwegian). 141 pp.Google Scholar
  26. Hillbricht-Ilkowska, A., 1977. Trophic relations and energy flow in pelagic plankton. Pol. ecol. Stud. 3: 3–98.Google Scholar
  27. Infante, A. & W. Riehl, 1982. The effect of Cyanophyta upon zooplankton in an eutrophic lake (Lake Valencia, Venezuela). This volume.Google Scholar
  28. Jassby, A. D. & C. R. Goldman, 1974. Loss rates from a lake phytoplankton community. Limnol. Oceanogr. 19: 618–627.Google Scholar
  29. Kalff, J. & R. Knoechel, 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Ann. Rev. Ecol. Syst. 9: 475–495.Google Scholar
  30. Lévêque, C., 1978. Ecology of Lake Chad — A tropical shallow lake (Africa). Dr. W. Junk, The Hague.Google Scholar
  31. Lewis, W. M., 1979. Zooplankton community analysis. Springer-Verlag, N.Y., 163 pp.Google Scholar
  32. Löffler, H., 1964. The limnology of tropical high-mountain lakes. Verh. int. Ver. Limnol. 15: 176–193.Google Scholar
  33. Lund, J. W. G. & C. S. Reynolds, 1982. The development and operation of large limnetic enclosures in Blelham Tarn, English Lake District, and their contribution to phytoplankton ecology. Prog. Phytoplankton Res. 1: 1–65.Google Scholar
  34. Mayr, E., 1963. Animal, species and evolution. Harvard University Press, Cambridge, Mass., 797 pp.Google Scholar
  35. Melack, J. M., 1979. Temporal variability of phytoplankton in tropical lakes. Oecologia 44: 1–7.Google Scholar
  36. Moriarity, D. J. W., J. P. E. C. Darlington, I. G. Dunn, C. M. Moriarity & M. P. Tevlin, 1973. Feeding and grazing in Lake George, Uganda. Proc. r. Soc. Lond. B 184: 299–319.Google Scholar
  37. Nilssen, J. P., 1978a. Selective vertebrate and invertebrate predation — some paleolimnological implications. Pol. Arch. Hydrobiol. 25: 307–320.Google Scholar
  38. Nilssen, J. P., 1978b. Eutrophication, minute algae and inefficient grazers. Mem. Ist. ital. Idrobiol. 36: 121–138.Google Scholar
  39. Overrein, L., H. M. Seip & A. Trollan, 1981. Acid precipitation — effects on forest and fish. Final Rep. SNSF-project 1972–1980. Res. Rep. Oslo-Ås, Norway, FR 19/80: 1–175.Google Scholar
  40. Potts, W. T. W. & G. Fryer, 1979. The effect of pH and salt content of sodium balance in Daphnia magna and Acantholeberis curvirostris (Crustacea: Cladocera). J. comp. Physiol. 129: 289–294.Google Scholar
  41. Rai, H., 1979. Microbiology of Central Amazon lakes. Amazoniana 6: 583–599.Google Scholar
  42. Rai, H. & G. Hill, 1981. Bacterial biodynamics in Lago Tupé, a Central Amazonian water ‘Ria Lake’. Arch. Hydrobiol., Suppl. 58: 420–468.Google Scholar
  43. Rai, H. & G. Hill, 1982. Establishing the pattern of heterotrophic bacterial activity in three Central Amazonian lakes. Hydrobiologia 86: 121–126.Google Scholar
  44. Reynolds, C. S. & S. W. Wiseman, 1982. Sinking losses of phytoplankton in closed limnetic systems. J. Plankton Res. 4: 489–522.Google Scholar
  45. Reynolds, C. S., J. M. Thompson, A. J. D. Ferguson & S. W. Wiseman, 1982. Loss processes in the population dynamics of phytoplankton maintained in closed systems. J. Plankton Res. 4: 561–600.Google Scholar
  46. Rzóska, J., 1961. Observations on tropical rainpools and general remarks on temporary waters. Hydrobiologia 17: 268–286.Google Scholar
  47. Schmidt, G. W., 1973. Primary production of phytoplankton in three types of Amazonian waters, 3. Primary productivity of phytoplankton in a tropical flood-plain lake of Central Amazonia, Lago do Castanho, Amazonas, Brazil. Amazoniana 4: 379–404.Google Scholar
  48. Shapiro, J., 1980. The importance of trophic-level interactions to the abundance and species composition of lakes in lakes. In J. Barica & L. R. Mur (eds.), Workshop on hypertrophic lakes, Växsjö, Sweden. Dev. Hydrobiol. 2: 105–116.Google Scholar
  49. Sternberg, H. O., 1968. Man and environmental change in South America. In F. J. Fittkau, J. Illies, H. Klinge, G. H. Schwabe & H. Siolo (eds.), Biogeography and Ecology in South America. Dr. W. Junk, The Hague: 413–445.Google Scholar
  50. Talling, J. F. & I. B. Tatting, 1965. The chemical composition of African lake waters. Int. Revue ges. Hydrobiol. 50: 421–463.Google Scholar
  51. Thomasson, K., 1956. Reflections on Arctic and Alpine lakes. Oikos 7: 117–143.Google Scholar
  52. Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545–560.Google Scholar
  53. Uherkovich, G. & G. W. Schmidt, 1974. Phytoplanktontaxa in dem zentralamazonischen Schwemmlandsee Lago do Castanho. Amazoniana 5: 243–283.Google Scholar
  54. Van der Heide, J., P. Leentvaar & J. Meyer, 1976. Brokopondo Res. Rep. Suriname. Part II. Hydrobiology of the man-made Brokopondo Lake. Natuurw. Stud. Suriname Nederl. Antillen, Utrecht. 90: 1–95.Google Scholar
  55. Viner, A. B., 1973. Responses of a mixed phytoplankton population to nutrient enrichment of ammonia and phosphate, and some associated ecological implications. Proc. r. Soc. Lond. B 183: 351–370.Google Scholar
  56. Viner, A. B., 1975a. The supply of minerals to tropical rivers and lakes (Uganda). In Editor, Coupling of land water ecosystems. Ecol. Monogr.: 227–261.Google Scholar
  57. Viner, A. B., 1975b. The sediment of Lake George (Uganda) I: Redox potentials, oxygen consumption and carbon dioxide output. Arch. Hydrobiol. 76: 181–197.Google Scholar
  58. Viner, A. B. & I. R. Smith, 1973. Geographical, historical and physical aspects of Lake George. Proc. r. Soc. Lond. B 184: 235–270.Google Scholar
  59. Vollenweider, R., 1968. Water management research. Scientific fundamentals of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factor in eutrophication. O.E.C.D. DAS/CSI/68.27; 192 pp.Google Scholar
  60. Zaret, T. M., 1981. Predation and freshwater communities. Yale University Press, New Haven and London, 187 pp.Google Scholar
  61. Zaret, T. M., A. H. Devol & A. dos Santos, 1981. Nutrient addition experiments in Lago Jacaretinga, Central Amazon Basin. Verh. int. Ver. Limnol. 21: 689–692.Google Scholar

Copyright information

© Dr W. Junk Publishers 1984

Authors and Affiliations

  • Jens Petter Nilssen
    • 1
  1. 1.Zoological Institute, University of OsloOsloNorway

Personalised recommendations