Hydrobiologia

, Volume 176, Issue 1, pp 379–396

Can we determine the biological availability of sediment-bound trace elements?

  • Samuel N. Luoma
Bioavailability and toxic effects

Abstract

It is clear from available data that the susceptibility of biological communities to trace element contamination differs among aquatic environments. One important reason is that the bioavailability of metals in sediments appears to be altered by variations in sediment geochemistry. However, methods for explaining or predicting the effect of sediment geochemistry upon metal bioavailability are poorly developed. Experimental studies demonstrate that ingestion of sediments and uptake from solution may both be important pathways of metal bioaccumulation in deposit/detritus feeding species. Relative importance between the two is geochemistry dependent. Geochemical characteristics of sediments also affect metal concentrations in the tissues of organisms collected from nature, but the specific mechanisms by which these characteristics influence metal bioavailability have not been rigorously demonstrated. Several prerequisites are necessary to better understand the processes that control metal bioavailability from sediments. 1) improved computational or analytical methods for analyzing distribution of metals among components of the sediments; 2) improved computational methods for assessing the influences of metal form in sediments on sediment-water metal exchange; and 3) a better understanding of the processes controlling bioaccumulation of metals from solution and food by metazoan species directly exposed to the sediments. Such capabilities would allow mechanistic explanations essential to the development of practical tools sought for determining sediment quality criteria for metals.

Key words

bio-availability metals sediments benthic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. M. & F. M. M. Morel, 1978. Copper sensitivity of Gonyaulax tamarensis. Limnnol. Oceanogr., 23: 283–295.Google Scholar
  2. Balistrieri, L. S. & J. W. Murray, 1982. The adsorption of Cu, Pb, Zn and Cd on goethite from major ion seawater. Geochim. Cosmochim. ACTA 46: 1253–1265.Google Scholar
  3. Blanck, H., 1984. Species dependent variation among aquatic organisms in their sensitivity to chemicals. In Rasmussen, L. (ed.) Ecotoxicology: Ecological Bulletins No. 36. AiO Printing Ltd, Odense: 107–119.Google Scholar
  4. Borchardt, T., 1983. Influence of food quantity on the kinetics of cadmium uptake and loss via food and seawater in Mytilus edulis. Mar. Biol. 76: 67–76.Google Scholar
  5. Borgmann, U. & K. M. Ralph, 1983. Complexation and toxicity of copper and the free metal bioassay technique. Wat. Res., 17: 1697–1703.Google Scholar
  6. Breteler, R. J., I. Valiela & J. M. Teal, 1981. Bioavailability of mercury in several Northeastern U.S. Spartina ecosystems. Estuarine, Coastal, Shelf Sci. 12: 155–166.Google Scholar
  7. Bryan, G. W., 1976. Some aspects of heavy metal tolerance in aquatic organisms. In Lockwood, A. P. M. (ed.), Effects of Pollutants on Aquatic Organisms. Cambridge University Press: 7–34.Google Scholar
  8. Bryan, G. W., 1984. Pollution due to heavy metals and their compounds. In Kinne, O. (ed.), Marine Ecology v. 5, pt. 3, John Wiley and Sons, New York: 1289–1431.Google Scholar
  9. Bryan, G. W., 1985. Bioavilibility and effects of heavy metals in marine deposits. In Ketchum, B., J. Capuzzo, W. Burt, I. Duedall, P. Park & D. Kester (eds), Wastes in the Ocean, v. 6; Near Shore Waste Disposal. John Wileu and Sons, Inc. New York: 41–79.Google Scholar
  10. Bryan, G. W. & L. G. Hummerstone, 1977. Indicators of heavy-metal contamination in the Looe estuary (Cornwall) with particular regard to silver and lead. J. Mar. Biol. Assn. U.K. 57: 75–92.Google Scholar
  11. Bryan, G. W., W. J. Langston & L. G. Hummerstone, 1980. The use of biological indicators of heavy metal contamination in estuaries, with special reference to an assessment of the biological availability of metals in estuarine sediments from South-West Britain. Marine Biological Association of the United Kingdom Occasional Publication no. 1, 73 pp.Google Scholar
  12. Bryan, G. W., W. J. Langston, L. G. Hummerstone & G. R. Burt, 1985. A Guide to the Assessment of Heavy-Metal Contamination in Estuaries Using Biological Indicators. Marine Biological Association of the United Kingdom Occasional Publication No. 4, Plymouth; 91 pp.Google Scholar
  13. Cain, D. J. & S. N. Luoma, 1983. Copper and silver accumulation in transplanted and resident clams (Macoma balthica) in South San Francisco Bay. Mar. Environm. Res. 15: 115–135.Google Scholar
  14. Cain, D. J. & S. N. Luoma, 1986. Effect of seasonally changing tissue weight on trace metal concentrations in the bivalve Macoma balthica in San Francisco Bay. Mar. Ecol. Progress Series 28: 209–217.Google Scholar
  15. Cain, D. J., J. K. Thompson & S. N. Luoma, 1987. The effect of differential growth on spatial comparisons of copper content of a bivalve indicator. In Lindberg, S. E. & T. C. Hutchinson (eds) Heavy Metals in the Environment, CEP Consultants Ltd., Edinburgh: 455–458.Google Scholar
  16. Cairns, J., 1984. Factors moderating toxicity in surface waters; In Wilson J. (ed.), The Fate of Toxics in Surface and Ground waters. Acad. Nat. Sci. Philadelphia: 49–64.Google Scholar
  17. Campbell, P. G. C., A. G. Lesis, P. M. Chapman, W. K. Fletcher, B. E. Imber, S. N. Luoma, P. M. Stokes & M. Winfrey, 1988. Biologically available metals in sediments. Natl. Res. Council of Canada publ. 27694, Ottawa. 295 pp.Google Scholar
  18. Campbell, P. G. C., A. Tessier, M. Bisson & R. Bougie, 1985. Accumulation of copper and zinc in the Yellow Water Lily, Nuphar variegatum: Relationships to metal partitioning in the adjacent lake sediments. Can. J. Fish Aquat. Sci. 42: 23–32.Google Scholar
  19. Crecelius, E. A., J. T. Hardy, C. I. Gibson, R. L. Schmidt, C. W. Apts, J.M. Hurtisen & S. P. Hoyce, 1982. Copper bioavailability to marine bivalves and shrimp: Relationship to cupric ion activity. Mar. Envir. Res. 6: 13–26.Google Scholar
  20. Cross, F. A. & W. G. Sunda, 1985. The relationship between chemical speciation and bioavailability of trace metals to marine organisms — A review. In Chao, N. L. and W. Kirby-Smith (eds) Proc. Sympos. on Utilization of Coastal Ecosystems, V. 1, Rio Grande, RS-Brasil: 169–182.Google Scholar
  21. Cutshall, N. H., J. R. Naidu & W. G. Pearcy, 1977. Zinc and cadmium in the Pacific Hake, Merluccius productus off the Western U.S. coast. Mar. Biol. 44: 195–201.Google Scholar
  22. Davies, A. G., 1976. An assessment of the basis of mercury tolerance in Dunaliella tertiolecta. J. Mar. Biol. Assn. U.K. 56: 39–57.Google Scholar
  23. Davies-Colley, R. J., P. O. Nelson & K. H. Williamson, 1984. Copper and cadmium uptake by estuarine sedimentary phases. Envir. Sci. Technol. 18: 491–499.Google Scholar
  24. Diks, D. M. & H. E. Allen, 1983. Correlation of copper distribution in a freshwater-sediment system to bioavailability. Bull. Envir. Contam. Toxicol. 30: 37–43.Google Scholar
  25. Dragun, J. & D E Baker, 1982. Characterization of copper availability and corn seedling growth by a DTPA soil test. Soil Sci. Am. J. 46: 921–925.Google Scholar
  26. Engel, D. W. & B. A. Fowler, 1979. Factors influencing cadmium accumulation and its toxicity to marine organisms. Envir. Health Perspectives 28: 81–88.Google Scholar
  27. Engel, D. W. & W.G. Sunda, 1979. Toxicity of cupric ion to eggs of the spot Leiostomus xanthurus and the Atlantic silverside Menidia menidia. Mar. Biol. 50: 121–126.Google Scholar
  28. Evans, R. D. & D. C. Lasenby, 1983. Relationship between body-lead concentration of Mysis relicta and sediment-lead concentrations in Kotenay Lake, B. C. Can. J. Fish. Aquat. Sci. 40: 78–81.Google Scholar
  29. Fisher, N., 1985. Accumulation of metals by marine picoplankton. Mar. Biol. 87: 137–142.Google Scholar
  30. Fisher, N. S., M. Bohe & J.-L. Teyssie, 1984. Accumulation and toxicity of Cd, Zn, Ag, and Hg in four marine phytoplankters. Mar. Ecol. Progress Ser. 18: 201–213.Google Scholar
  31. Fisher, N. S. & D. Frodd, 1980. Heavy metals and marine diatoms: Influence of dissolved organic compounds on toxicity and selection for metal tolerance among four species. Mar. Biol. 59: 85–93.Google Scholar
  32. Fisher, N. S. & J.-L. Teyssie, 1986. Influence of food composition on the biokinetics and tissue distribution of zinc and americium in mussels. Mar. Ecol. Prog. Ser. 28: 197–207.Google Scholar
  33. Florence, T. M., B G. Lumsden & J. J. Fardy, 1983. Evaluation of some physico-chemical techniques for the determination of the fraction of dissolved copper toxic to the marine diatom Nitzshia closterium. Analytical Chimica ACTA 151: 281–295.Google Scholar
  34. Foster, P. L. & F. M. M. Morel, 1982. Reversal of cadmium toxicity in a diatom: An interaction between cadmium activity and iron. Limnol. Oceanogr. 27: 745–752.Google Scholar
  35. Fuller, C. C. & J. A. Davis, 1987. Processes and kinetics of Cd2+ sorption by a calcareous aquifer sand. Geochim. Cosmochim. ACTA 51: 1491–1502.Google Scholar
  36. Freedman, M. L., P. M. Cunningham, J. E. Schindler & M. J. Zimmerman, 1980. Effect of lead speciation on toxicity. Bull. Envir. Contam. Toxicol. 25: 389–393.Google Scholar
  37. Gaillard, J.-F., C. Jeandel, G. Michard, E. Nicolas & D. Renard, 1986. Interstitial waer chemistry of Villefranche bay sediments: Trace metal diagenesis. Mar. Chem. 18: 233–247.Google Scholar
  38. George, S. G., B. J. S. Pirie, A. R. Cheyene, T. L. Coombs & P. T. Grant, 1978. Detoxification of metals by marine bivalves: An ultrastructural study of the compartmentation of copper and zin in the oyster Ostrea edulis. Mar. Biol. 45: 147–156.Google Scholar
  39. Giblin, A. E., G. W. Luther III & A. Valiela, 1986. Trace metal solubility in salt marsh sediments contaminated with sewage sludge. Estuarine, coastal Shelf Sci. 23: 477–498.Google Scholar
  40. Gough, L. P., J. M. McNeal & R. C. Severson, 1980. Predicting native plant copper, iron, manganese and zinc levels using DTPA and EDTA soil extractants, Northern Great Plains. Soil Sci. Am. J., 44: 1030–1035.Google Scholar
  41. Guy, R. D., C. L. Chakrabarti & D. C. McBain, 1977. An evaluation of extraction techniques for the fractionation of copper and lead in model sediment systems. Wat. Res. 12: 21–24.Google Scholar
  42. Hall, T. M., 1982. Free ionic nickel accumulation and localization in the freshwater zooplankter, Daphnia magna. Limnol. Oceanogr. 27: 718–727.Google Scholar
  43. Harvey, R. W. & S. N. Luoma, 1985a. Separation of solute and particulate vectors of hravy metal uptake in controlled suspension-feeding experiments with Macoma balthica. Hydrobiologia 121: 97–102.Google Scholar
  44. Harvey, R. W. & S. N. Luoma, 1985b. Effect of adherent bacteria and bacterial extracellular polyimers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag. Mar. Ecol. Progress Ser. 22: 281–289.Google Scholar
  45. Honeyman, B. D., 1984. Cation and anion adsorption at the oxide/solution interface in systems containing mixtures of adsorbents. An investigation of the concept of adsorptive additivity. PhD Thesis, Stanford University, Stanford, CA.Google Scholar
  46. Honeyman, B. D. & J. O. Leckie, 1986. Macroscopic partitioning coefficients for metal ion adsorption. P. 162–190. In. J. A. Davis and K. F. Hayes (eds) Geochemical Processes at Mineral Surfaces, Am. Chem. Symp. Ser. 23, Am. Chem. Soc., Washington, D.C.Google Scholar
  47. Huntsman, S. A. & W. G. Sunda, 1980. The role of trace metals in regulating phytoplankton growth. In Morris, I (ed.) The Physiological Ecology of Phytoplankton, Blackwell Scientific Publications, London: 285–328.Google Scholar
  48. Jackson, G. A. & J. J. Morgan, 1978. Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations. Limnol. Oceanogr. 23: 268–282.Google Scholar
  49. Jenne, E. A., 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. In Gould, R. F. (ed.) Trace Inorganics in water. Am. Chem. So., Washington, D.C.: 337–387.Google Scholar
  50. Jenne, E. A., 1977. Trace element sorption by sediments and soils — sites and processes. W. Chappel & K. Peterson (eds), Symposium on Molybdenum in the Environment. Dekker, New York: 425–553.Google Scholar
  51. Jenne, E. A., D. M. DiToro, H. E. Allen & C. S. Zarba, 1986. An activity-based model for developing sediment criteria for metals: Part 1. A new approach. In J. N. Lester, R. Perry & R. M. Sterritt (eds) Proceedings of the International Conf. Chemicals in the Environment, Salper, London: 560–568.Google Scholar
  52. Johansson, C., D. J. Cain & S. N. Luoma, 1986. Variability in fractionation of Cu, Ag, and Z, among cytosolic proteins in the bivalve Macoma balthica. Mar. Ecol. Progress Ser., 28: 87–97.Google Scholar
  53. Kheboian, C. & C. F. Bauer, 1987. Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Anal. Chem. 59: 1417–1423.Google Scholar
  54. Korcak, R. F. & D. S. Fanning, 1978. Extractability of cadmium, copper, nickel and zinc by double acid versus DTPA and plant content at excessive soil levels. J. Envir. Quality 7: 506–512.Google Scholar
  55. Krantzberg, G., 1987. A study of the role of biotic and abiotic factors in modifying metal accumulation by Chironmuss (Diptera: Chironomidae). Ph.D. thesis, University of Toronto, Ontario, Canada. 228 pp.Google Scholar
  56. Kuwabara, J. S., J. A. Davis & C. C. Y. Chang, 1986. Algal growth response to particle-bound orthophosphate and zinc. Limnol. Oceanogr. 31: 503–511.Google Scholar
  57. Langston, W. J., 1980. Arsenic in U.K. estuarine sediments and its availability to benthic organisms. J. Mar. Biol. Assn. U.K. 60: 869–881.Google Scholar
  58. Langston, W. J., 1982. The distribution of mercury in British estuarine sediments and its availability to deposit feeding bivalves. J. Mar. Biol. Assn. U.K. 62: 667–684.Google Scholar
  59. Langston, W. J., 1985. Assessment of the distribution and availability of arsenic and mercury in estuaries. P 131–146 in: Wilson, J. G. and W. Halcrow (eds.) Estuarine Management and Quality Assessment, Plenum Press. New York.Google Scholar
  60. LeBlanc, G. A., J. D. Mastone, A. P. Paradice, B. F. Wilson, H. B. Lockhart, Jr., & K. A. Robillard, 1984. The influence of speciation on the toxicity of silver to fathead minnow (Pimephales promelas). Envir. Toxicol. Chem. 3: 37–46.Google Scholar
  61. Lindsay, W. L. and W. A. Norvell, 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Am. J. 42: 421–428.Google Scholar
  62. Loring, D. H., 1981. Potential bioavailability of metals in eastern Canadian estuarine and coastal sediments. Rapp. P.-v. Reun. Cons. int. Explor. Mer, 181: 93–101.Google Scholar
  63. Loring, D. H. & F. Prosi, 1986. Cadmium and lead cycling between water, sediment, and biota in an artificially contaminated mud flat on Borkum (F R G ). Water Sci. Technol. 18: 131–139.Google Scholar
  64. Luoma, S. N., 1977. Dynamics of biologically available mercury in a small estuary. Estuarine Coastal Mar. Sci. 5: 643–652.Google Scholar
  65. Luoma, S. N., 1983. Bioavailability of trace metals to aquatic organisms — A review. Sci. Total Envir. 28: 1–22.Google Scholar
  66. Luoma, S. N., 1986. A comparison of two methods for determining copper partitioning in oxidized sediments. Mar. Chem. 20: 45–59.Google Scholar
  67. Luoma, S. N. & G. W. Bryan, 1978. Factors controlling availability of sediment-bound lead to the estuarine bivalve Scrobicularia plana. J. Mar. Biol. Assn. U.K. 58: 793–802.Google Scholar
  68. Luoma, S. N. and G. W. Bryan, 1982. A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve Scrobicularia plana and the polychaete Nereis diversicolor. Estuarine, Coastal and Shelf Sci. 15: 95–108.Google Scholar
  69. Luoma, S. N., D. J. Cain & C. Johansson, 1985. Temporal fluctuations of silver, copper and zinc in the bivalve Macoma balthica at five stations in south San Francisco Bay. Hydrobiologia 129: 109–120.Google Scholar
  70. Luoma, S. N. & J. A. Davis, 1983. Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar. Chem. 12: 159–181.Google Scholar
  71. Luoma, S. N. & E. A. Jenne, 1976a. Estimating bioavailability of sediment-bound trace metals with chemical extractants. In D. D. Hemphill (ed.) Trace Substances in Environm. Health — X., University of Missouri, Columbia: 343–351.Google Scholar
  72. Luoma, S. N. & E. A. Jenne, 1976b. Factors effecting the availability of sediment-bound cadmium to the estuarine deposit feeding clam, Macoma balthica. In E. Cushing (ed.) Radioecology and Energy Resources, Dowden, Hutchinson and Ross, Inc., Stroudsnerg: 283–291.Google Scholar
  73. Luoma, S. N. & E. A. Jenne, 1977. The availability of sediment-bound cobalt, silver, and zinc to a deposit-feeding clam. In Wildung R. E. & H. Drucker (eds) Biological Implications of Metals in the Environment. NTIS CONF-750920, Springfield, VA: 213–230.Google Scholar
  74. Luoma, S. N. & D. J. H. Philips, 1988. Spatial distribution, temporal variation and impacts of trace elements in San Francisco Bay. Mar. Poll. Bull. 19: 413–425.Google Scholar
  75. Marquenie, J. M., 1985. Bioavailability of micropollutants. Sci. Technol. Letters 6: 351–358.Google Scholar
  76. Mason, A. Z., K. D. Jenkins & P. A. Sullivan, 1988. Mechanisms of trace metal accumulation in the polychaete Neanthes arenaceodentata. J. Mar. Biol. Assn. U.K. v. 68 (in press).Google Scholar
  77. McKnight, D., 1981. Chemical and biological processes controlling the response of a freshwater ecosystem to copper stress: A field study of the CuSO4 treatment of Mill Pond Reservoir, Burlington, Massachusetts. Limnol. Oceanogr. 26: 518–531.Google Scholar
  78. McKnight, D. M. & F. M. M. Morel, 1980. Copper complexation by siderophores from filamentous blue-green algae. Limnol. Oceanogr. 25: 62–71.Google Scholar
  79. Morel, F. M. M. and R. J. M. Hudson, 1985. The geobiological cycle of trace elements in aquatic systems. Redfield revisited. In Stumm W. (ed.) Chemical Processes in Lakes, John Wiley and Sons, New York: 251–281.Google Scholar
  80. Morel, F. M. M., R. E. McDuff & J. J. Morgan, 1973. Interactions and chemostasis in aquatic chemical systems: Role of pH, pe, solubility and complexation. In Singer, P. C. (ed.) Trace metals and Metal Organic Interactions in Natural Waters, Ann Arbor Science Publications. Ann. Arbor: 157–200.Google Scholar
  81. Neff, , J. W., R. S. Foster & J. F. Slowey, 1978. Availability of sediment-adsorbed heavy metals to benthos with particular emphasis on deposit-feeding infauna. Army Corps of Engineers Technical Report D-78-42, 78 pp.Google Scholar
  82. Newman, M. C. & A. W. McIntosh, 1983. Slow accumulation of lead from contaminated food sources by the freshwater gastropods, Physa integra and Campeloma decisum. Arch. Envir. Contain. Toxicol. 12: 685–692.Google Scholar
  83. Norvell, W. A. & W. L. Lindsay, 1972. Reaction of DTPA chelates of iron, zinc, copper, and manganese with soils. Soil Sci. Soc. Am. Proc. 36: 778–783.Google Scholar
  84. Oakden, J. M., J. S. Oliver & A. R. Flegal, 1984. EDTA chelation and zinc antagonism with cadmium in sediment: effects on the behaviour and mortality of two infaunal amphipods. Mar. Biol. 84: 125–130.Google Scholar
  85. Oakley, S. M., P. O. Nelson & K. J. Williamson, 1981. Model of trace-metal partitioning in marine sediments. Envir. Sci. Technol. 15: 474–480.Google Scholar
  86. Owen, G., 1966. Digestion. In Wilbur, K. M. & C M Yonge (eds), Physiology of Mollusca, Vol II. Academic Press, New York: 53–96.Google Scholar
  87. Pagenkopf, G.K., 1983. Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Envir. Sci. Technol. 17: 342–347.Google Scholar
  88. Packer, D. M., M. P. Ireland, & R. J. Wootton, 1980. Cadmium, copper, lead, zinc and manganese in the polychaete Arenicola marina from sediments around the coast of Wales. Envir. Poll. (Series A) 22: 309–321.Google Scholar
  89. Pecon, J. & E. N. Powell, 1981. Effect of the amino acid histidine on the uptake of cadmium from the digestive system of the Blue Crab, Callinectes sapidus. Bull. Envir. Contain. Toxicol. 27: 34–41.Google Scholar
  90. Pickering, W. F., 1981. Selective chemical extraction of soil components and bound metal species. CRC Critical Reviews Anal. Chem. 12: 233–266.Google Scholar
  91. Pesch, C. E. & D. Morgan, 1978. Influence of sediment in copper toxicity tests with the polychaete Neathes arenaceodentata. Wat. Res. 12: 747–751.Google Scholar
  92. Ray, S., D. W. McLeese & M. R. Peterson, 1981. Accumulation of copper, zinc, cadmium and lead from two contaminated sediments by three marine invertebrates — a laboratory study. Bull. Envir. Contain. Toxicol. 26: 315–322.Google Scholar
  93. Rendel, P. S., G. E. Batley & A. J. Cameron, 1980. Adsorption as a control of metal concentrations in sediments extracts. Envir. Sci. Technol. 14: 314–318.Google Scholar
  94. Reuter, J. G., Jr. & F. M. M. Morel, 1981. The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanism in Thalassiosira pseudonana. Limnol. Oceanogr. 26: 67–73.Google Scholar
  95. Ritz, D. A., R. Swain & N. G. Elliot, 1982. Use of the mussel Mytilus edulis in monitoring heavy metal levels in seawater. Aus. J. Mar. Freshwat. Res. 33: 491–506.Google Scholar
  96. Roesijadi, G., 1981. The significance of low molecular weight, metallothionein-like proteins in marine invertebrates: current status. Mar. Envir. Res. 4: 167–179.Google Scholar
  97. Sloof, W., J. A. M. van Oers & D. DeZwart, 1986. Margins of uncertainty in ecotoxicological hazard assessment. Envir. Toxicol. Chem; 5: 841–852.Google Scholar
  98. Strong, C. R. & S. N. Luoma, 1981. Variations in correlation of body size with concentrations of Cu and Ag in the bivalve Macoma balthica. Can. J. Fish. Aquat. Sci. 38: 1059–1064.Google Scholar
  99. Stumm, W. & P. A. Brauner, 1975. Chemical speciation. In Riley, J. P. & G. Skirrow (eds), Chemical Oceanography, Vol I 2nd Ed, Academic Press, London: 173–240.Google Scholar
  100. Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry. 2nd Ed. John Wiley & Sons, New York, 780 pp.Google Scholar
  101. Sunda, W. G., 1987. Neritic-oceanic trend in trace-metal toxicity to phytoplankton communities. In Capuzzo, J. M. & Dana R. Kester (eds), Oceanic Processes in marine Pollution — Vol I, Biological Processes and Wastes in the Ocean, Robert E. Krieger Publ. Co, Malabar, FL: 19–31.Google Scholar
  102. Sunda, W. G., D. W. Engel & R. M. Thuotte, 1978. Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio: Importance of free admium ion. Envir. Sci. Technol. 12: 409–413.Google Scholar
  103. Sunda, W. G. & R. R. Guillard, 1976. The relationship between cupic ion activity and the toxicity of copper to phytoplankton. J. Mar. Res 34: 511–529.Google Scholar
  104. Sunda, W. G. & S. A. Huntsman, 1983. Effect of competitive interactions between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatom Thalassiosira. Limnol. Oceanogr. 28: 924–934.Google Scholar
  105. Sunda, W. G. & J. A. M. Lewis, 1978. Effect of complexation by natural organic ligands on the toxicity of copper to a unicellular alga, Monochrysis lutheri. Limnol. Oceanogr. 23: 870–876.Google Scholar
  106. Swallow, K. C., J. C. Westall, D. M. McKnight, N. M. L. Morel & F. M. M. Morel, 1978. Potentiometric determination of copper complexation by phytoplankton exudates. Limnol. Oceanogr. 23: 538–542.Google Scholar
  107. Swartz, R. C., G. R. Ditsworth, D. W. Schults & J. O. Lamberson, 1985. Sediment toxicity to a marine infaunal amphipod: Cadmium and its interaction with sewage sludge. Mar. Envir. Res. 18: 133–153.Google Scholar
  108. Tessier, A., P. G. C. Campbell & M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844–851.Google Scholar
  109. Tessier, A., P. G. C. Campbell, J. C. Auclair & M. Bisson, 1984. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Can. J. Fish. Aquat. Sci. 41: 1463–1471.Google Scholar
  110. Tessier, A., F. Rapin & R. Carignan, 1985. Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim. Cosmoschim. ACTA 49: 183–194.Google Scholar
  111. Vangenechten, J. H. D., S. R. Aston & S. W. Fowler, 1983. Uptake of americium-241 from two experimentally labelled deep-sea sediments by three benthic species: a bivalve mollusc, a polychaete and an isopod. Mar. Ecol. Progress. Ser. 13: 219–228.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Samuel N. Luoma
    • 1
  1. 1.Mail Stop 465, U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations