, Volume 176, Issue 1, pp 331–348 | Cite as

Acid rain and its effects on sediments in lakes and streams

  • Gene E. Likens
Acid rain and lake acidification


Wet and dry deposition of acidic substances, which are emitted to the atmosphere by human activities, have been falling on increasingly widespread areas throughout the world in recent decades. As a result, annual precipitation averages less than pH 4.5 over large areas of the Northern Temperate Zone, and not infrequently, individual rainstorms and cloud or fog-water events have pH values less than 3. Concurrently, thousands of lakes and streams in North America and Europe have become so acidified that they no longer support viable populations of fish and other organisms.

Acid deposition may affect sediments in lakes and streams in a variety of ways. In particular, the sediment-water exchange of metals, sulfur, nitrogen and phosphorus, microbial processes, growth of periphyton and macrophytes, and benthic invertebrates may be affected.

Overall, the effects of acid deposition on lake and stream ecosystems are the result of numerous and complex biogeochemical interactions, including catchment characteristics, flow path and residence time of water, and lake-basin morphometry and acid neutralization capacity of both aquatic and terrestrial (catchment) ecosystems.

Suggestions for future research are given.

Key words

acid rain sediment-water exchange biogeochemistry water pollution aquatic and terrestrial ecosystem interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, B. I., 1985. Properties and chemical composition of surficial sediments in the acidified Lake Gårdsjön, SW Sweden. Ecol. Bull. (Stockholm) 37: 251–262.Google Scholar
  2. Andersson, F. & B. Olsson (eds.), 1985. Lake Gårdsjön: An Acid Forest Lake and its Catchment. Ecol. Bull. (Stockholm) No. 37, 336 pp.Google Scholar
  3. Asbury, C. E., 1989. Groundwater seepage and its relationship to nutrient budgets and sediment chemistry in Mirror Lake, New Hampshire. Ph.D. Thesis, Cornel University.Google Scholar
  4. Asbury, C. E.; F. A. Vertucci M. D. Mattson, & G. E. Likens, 1989. The acidification of Adirondack lakes. Environ. Sci. and Tech. (In Press).Google Scholar
  5. Baker, J. P. & C. L. Schofield, 1980. Aluminum toxicity to fish as related to acid precipitation and Adirondack surface water quality. In D. Drabløs & A. Tollan (eds.). Ecological Impact of Acid Precipitation. SNSF Project, Ås, Norway: 292–293.Google Scholar
  6. Baker, L. A., P. L. Brezonik & C. D. Pollman, 1986. Model of internal alkalinity generation: sulfate retention component. Water, Air, and Soil Pollution 31: 89–94.Google Scholar
  7. Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. Royal Soc. London 305: 451–477.Google Scholar
  8. Carignan, R., 1988. Seasonal dynamics of sulfur and hydrogen sulfide near the sediment-water interface of an oligotrophic lake. Verh. int. Ver. Limnol. 23 (2): 106–115.Google Scholar
  9. Carignan, R. & A. Tessier, 1985. Zinc deposition in acid lakes: the role of diffusion. Science 228: 1524–1526.Google Scholar
  10. Charles, D. F., 1984. Recent pH history of Big Moose Lake (Adirondack Mountains, New York, USA) inferred from sediment diatom assemblages. Verh. int. Ver. Limnol. 22: 559–566.Google Scholar
  11. Charles, D. F., 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66 (3): 994–1011.Google Scholar
  12. Charles, D. F. & S. A. Norton. 1986. Paleolimnological evidence for trends in atmospheric deposition of acids and metals. In J. Gibson (chairman). Acid Deposition: Longterm Trends. National Academy Press, Washington, D.C.: 335–506.Google Scholar
  13. Charlson, R. J. & H. Rodhe, 1982. Factors controlling the acidity of natural rainwater. Nature 295: 683–685.Google Scholar
  14. Chen, C. W., S. A. Gherini, N. E. Peters, P. S. Murdoch, R. M. Newton & R. A. Goldstein, 1984. Hydrologic analyses of acidic and alkaline lakes. Water Resour. Res. 12 (3): 360–364.Google Scholar
  15. Cronan, C. S., 1985. Biogeochemical influence of vegetation and soils in the ILWAS watersheds. Water, Air and Soil Pollution 26: 355–371.Google Scholar
  16. David, M. B. & C. T. Driscoll, 1984. Aluminum speciation and equilibria in soil solutions of a haplorthod in the Adirondack Mountains (New York, USA). Geoderma 33: 297–318.Google Scholar
  17. Dickson, W., 1978. Some effects of the acidification of Swedish lakes. Verh. int. Ver. Limnol. 20: 851–856.Google Scholar
  18. Dickson, W., 1983. Water acidification — effects and counter-measures. Summary Document. In Ecological Effects of Acid Deposition. National Swedish Environment Protection Board, Report PM1636, Stockholm: 267.Google Scholar
  19. Drabløs, D. & A. Tollan (eds.), 1980. Ecological Impact of Acid Precipitation. SNSF Project, Ås, Norway. 383 pp.Google Scholar
  20. Driscoll, C. T., J. N. Galloway, J. F. Hornig, G. E. Likens, M. Oppenheimer, K. A. Rahn & D. W. Schindler, 1985. Is there scientific consensus on acid rain? Excerpts from six governmental reports. Ad Hoc Committee on Acid Rain: Science and Policy. October 1985. Special Publication of the Institute of Ecosystem Studies, The New York Botanical Garden, Millbrook, New York. 13 pp.Google Scholar
  21. Eaton, J. S., G. E. Likens & F. H. Bormann, 1978. The input of gaseous and particulate sulfur to a forested ecosystem. Tellus 30: 546–551.Google Scholar
  22. Eaton, J. S., G. E. Likens & F. H. Bormann, 1980. Wet and dry deposition of sulfur at Hubbard Brook. In T. C. Hutchinson & M. Havas (eds.). Effect of Acid Precipitation on Terrestrial Ecosystems. NATO Conf. Series 1: Ecology 4. Plenum Publishing Corp.: 69–75.Google Scholar
  23. Ford, M. S., 1984. The influence of lithology on ecosystem development in New England: a comparative paleoecological study. Ph.D. Thesis, University of Minnesota, Minneapolis.Google Scholar
  24. Fuller, R. D., C. T. Driscoll, G. B. Lawrence & S. C. Nodvin, 1987. Processes regulating sulphate flux after wholetree harvesting. Nature 125: 707–710.Google Scholar
  25. Gahnstrom, G., 1985. Sediment oxygen uptake in the acidified Lake Gårdsjön, Sweden. Ecol. Bull. (Stockholm) 37: 276–286.Google Scholar
  26. Gahnström, G. & S. Fleischer, 1985. Microbial glucose transformation in sediment from acid lakes. Ecol. Bull. (Stockholm) 37: 287–292.Google Scholar
  27. Galloway, J. N., 1986. Testimony to the Committee on Environment and Public Works, U.S. Senate, Washington, D.C. 2 October 1986.Google Scholar
  28. Galloway, J. N. & G. E. Likens, 1979. Atmospheric enhancement of metal deposition in Adirondack lake sediments. Limnol. Oceanogr. 24(3): 427–433.Google Scholar
  29. Galloway, J. N., G. E. Likens & M. E. Hawley, 1984. Acid precipitation: natural versus anthropogenic components. Science 226: 829–831.Google Scholar
  30. Galloway, J. N., G. E. Likens, W. C. Keene & J. M. Miller. 1982a. The composition of precipitation in remote areas of the world. J. Geophys. Res. 87 (11): 8771–8786.Google Scholar
  31. Galloway, J. N., J. D. Thornton, S. A. Norton, H. L. Volchok & R. A. N. McLean, 1982b. Trace metals in atmospheric deposition: A review and assessment. Atmos. Environ. 16 (7): 1677–1700.Google Scholar
  32. Gibson, J. H. (chairman), 1986. Acid Deposition: LongTerm Trends. Environmental Studies Board, National Academy Press, Washington, D.C. 506 pp.Google Scholar
  33. Gorham, E., F. B. Martin & J. T. Litzau, 1984. Acid rain ionic correlations in the eastern USA 1980–1981. Science 225: 407–409.Google Scholar
  34. Grahn, O., H. Hultberg & L. Landner, 1974. Oligotrophication — a self-acceleration process in lakes subjected to excessive supply of acid substances. Ambio 3: 93–94.Google Scholar
  35. Grennfelt, P., S. Larsson, P. Leyton & B. Olsson, 1985. Atmospheric deposition in the Lake Gårdsjön area, SW Sweden. Ecol. Bull. (Stockholm) 37: 101–108.Google Scholar
  36. Griffin, J. J. & E. D. Goldberg, 1979. Morphologies and origin of elemental carbon in the environment. Science 206: 563–565.Google Scholar
  37. Haines, T., 1986. Fish population trends in response to surface water acidification. In J. Gibson (chairman). Acid Deposition: Long-term Trends. National Academy Press, Washington, D.C.: 300–334.Google Scholar
  38. Hall, R. J., G. E. Likens, S. B. Fiance & G. R. Hendrey, 1980. Experimental acidification of a stream in the Hubbard Brook Experimental Forest, New Hampshire. Ecology 61 (4): 976–989.Google Scholar
  39. Hall, R. J., C. T. Driscoll & G. E. Likens, 1987. Importance of hydrogen ions and aluminium in regulating the structure and function of stream ecosystems: an experimental test. Freshwat. Biol. 18: 17–43.Google Scholar
  40. Hedin, L. O., G. E. Likens & F. H. Bormann, 1987. Decrease in precipitation acidity resulting from decreased SO4 2- concentration. Nature 325: 244–246.Google Scholar
  41. Hedin, L. O., M. S. Mayer & G. E. Likens, 1988. The effect of deforestation on organic debris dams. Verh. int. Ver. Limnol. 23 (2): 1135–1141.Google Scholar
  42. Hendrey, G. R. & F. A. Vertucci, 1980. Benthic plant communities in acidic Lake Colden, New York: Sphagnum and the algal mat. In D. Drables & A. Tollan (eds.). Ecological Impact on Acid Precipitation. SNSF Project Ås, Norway: 314–315.Google Scholar
  43. Hornbeck, J. W., G. E. Likens & J. S. Eaton, 1976. Seasonal variation in acidity of precipitation and the implications for forest-stream ecosystems. In L. S. Dochinger & T. A. Seliga (eds.). Proc. of the First Internat. Symp. on Acid Precipitation and the Forest Ecosystem. USDA Forest Service General Tech. Report NE-23: 597–609.Google Scholar
  44. Hultberg, H., 1976. Thermally stratified acid water in late winter — a key factor inducing self-accelerating processes which increase acidification. In L. S. Dochinger & T. A. Seliga (eds.). Proc. of the First Internat. Symp. on Acid Precipitation and the Forest Ecosystem. USDA Forest Service, General Tech. Report NE-23: 503–517.Google Scholar
  45. Hultberg, H., 1985. Changes in fish populations and water chemistry in Lake Gårdsjön and neighbouring lakes during the last century. Ecol. Bull. (Stockholm) 37: 64–72.Google Scholar
  46. Jacks, G., E. Olofsson & G. Werme, 1986. An acid surge in a well-buffered stream. Ambio 15 (5): 282–285.Google Scholar
  47. Jackson, T. A., G. Kipphut, R. H. Hesslein & D. W. Schindler, 1980. Experimental study of trace metal chemistry in soft-water lakes at different pH levels. Can. J. Aquat. Sci. 37: 387–402.Google Scholar
  48. Jeffries, D. C., C. M. Cox & P. J. Dillon, 1979. Depression of stream pH in lakes and streams in central Ontario during snowmelt. J. Fish. Res. Bd. Can. 36: 640–646.Google Scholar
  49. Johannessen, M. & A. Henriksen, 1978. Chemistry of snow meltwater: changes in concentration during melting. Water Resour. Res. 14: 615–619.Google Scholar
  50. Johannessen, M., A. Skartveit & R. F. Wright, 1980. Streamwater chemistry before, during and after snowmelt. In D. Drables & A. Tollan (eds.). Ecological Impact of Acid Precipitation. SNSF Project, Ås, Norway: 224–225.Google Scholar
  51. Johannessen, M., T. Dale, E. T. Gjessing, A. Henriksen & R. F. Wright, 1976. Proceedings of the International Symposium on Isotopes and Impurities in Snow and Ice. Internat. Assoc. of Hydrobiological Science, Grenoble, France, August 1975. Internat. Association of Hydrological Science Publ. 118.Google Scholar
  52. Johnson, D. W., J. W. Hornbeck, J. M. Kelly, W. T. Swank & D. E. Todd, 1980. Regional patterns of soil sulfate accumulation: Relevance to ecosystem sulfur budgets. In D. S. Shriner, C. R. Richmond & S. E. Lindberg (eds.). Atmospheric Sulfur Deposition: Environmental Impact and Health Effects. Ann Arbor Science, Ann Arbor, Michigan: 507–520.Google Scholar
  53. Johnson, D. W., J. Turner & J. M. Kelly, 1982. The effects of acid precipitation on forest nutrient status. Water Resour. Res. 18: 449–461.Google Scholar
  54. Kramer, J. R., A. W. Andren, R. A. Smith, A. H. Johnson, R. B. Alexander & G. Oehlert, 1986. Streams and lakes. In J. Gibson (chairman). Acid Deposition: Long-Term Trends. National Academy Press, Washington, D.C.: 231–299.Google Scholar
  55. Lazarek, S., 1985. Ephiphytic algal production in the acidified Lake Gårdsjön, SW Sweden. Ecol. Bull. (Stockholm) 37: 213–218.Google Scholar
  56. Likens, G. E., 1984. Beyond the shoreline: a watershed-ecosystem approach. Verh. int. Ver. Limnol. 22: 1–22.Google Scholar
  57. Likens, G. E., 1985. An experimental approach for the study of ecosystems. J. Ecol. 73: 381–396.Google Scholar
  58. Likens, G. E., 1987. Chemical wastes in our atmosphere — an ecological crisis. Industrial Crisis Quarterly 1: 13–33.Google Scholar
  59. Likens, G. E. & R. E. Bilby, 1982. Development, maintenance and role of organic-debris dams in New England streams. In F. J. Swanson, R. J. Janda, T. Dunne & D. W. Swanston (eds.). Sediment Budgets and Routing in Forested Drainage Basins. USDA Forest Service General Technical Report PNW-141: 122–128.Google Scholar
  60. Likens, G. E. & F. H. Bormann, 1974. Acid rain: a serious regional environmental problem. Science 184: 1176–1179.Google Scholar
  61. Likens, G. E. & T. J. Butler, 1981. Recent acidification of precipitation in North America. Atmos. Environ. 15 (7): 1103–1109.Google Scholar
  62. Likens, G. E. & R. E. Moeller, 1985. Chemistry. In G. E. Likens (ed.). An Ecosystem Approach to Aquatic Ecology: Mirror Lake ant its Environment. Springer-Verlag New York Inc.: 392–410.Google Scholar
  63. Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher & R. S. Pierce, 1970. The effect of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monogr. 40 (1): 23–47.Google Scholar
  64. Likens, G. E., F. H. Bormann & N. M. Johnson, 1972. Acid rain. Environment 14: 33–40.Google Scholar
  65. Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton & N. M. Johnson, 1977. Biogeochemistry of a Forested Ecosystem. Springer-Verlag New York Inc. 146 pp.Google Scholar
  66. Likens, G. E., R. F. Wright, J. N. Galloway & T. J. Butler, 1979. Acid rain. Sci. Amer. 241: 43–51.Google Scholar
  67. Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton & R. E. Munn, 1984. Long-term trends in precipitation chemistry at Hubbard Brook, New Hampshire. Atmos. Environ. 18: 2641–2647.Google Scholar
  68. Likens, G. E., F. H. Bormann, R. S. Pierce & J. S. Eaton, 1985a. The Hubbard Brook Valley. In G. E. Likens (ed.). An Ecosystem Approach to Aquatic Ecology: Mirror Lake and its Environment. Springer-Verlag New York Inc.: 9–39.Google Scholar
  69. Likens, G. E., J. S. Eaton, N. M. Johnson & R. S. Pierce, 1985b. Flux and balance of water and chemicals. In G. E. Likens (ed.). An Ecosystem Approach to Aquatic Ecology: Mirror Lake and Its Environment. Springer-Verlag New York Inc.: 135–155.Google Scholar
  70. Likens, G. E., W. C. Keene, J. M. Miller & J. N. Galloway, 1987. Chemistry of precipitation from a remote, terrestrial site in Australia. J. Geophys. Res. 92: 13299–13314.Google Scholar
  71. NADP/NTN Annual Data Summary. Precipitation Chemistry in the United States. 1986. NADP/NTN Coordinator's Office, Colorado St. University, Ft. Collins, Colorado. 240 pp.Google Scholar
  72. Nilsson, S. I., 1985. Why is Lake Gårdsjön acid? — An evaluation of processes contributing to soil and water acidification. Ecol. Bull. (Stockholm) 37: 311–318.Google Scholar
  73. Nodvin, S. C., C. T. Driscoll & G. E. Likens, 1986. The effect of pH on sulfate adsorption by a forest soil. Soil Science 142: 69–75.Google Scholar
  74. Norton, S. (chairman), 1984. Acid Deposition: Processes of Lake Acidification. Environmental Studies Board, National Academy Press, Washington, D.C. 11 pp.Google Scholar
  75. Odén, S., 1968. The acidification of air and precipitation and its consequences on the natural environment. Swedish National Science Res. Council, Ecology Committee, Bulletin 1. 68 pp.Google Scholar
  76. Office of Technology Assessment, 1984. Acid rain and transported air pollutants: Implications for public policy. Report OTA-0–204. Office of Technology Assessment, US Congress, Washington, D.C. 323 pp.Google Scholar
  77. Overrein, L. N., H. M. Seip & A. Tollan, 1980. Acid precipitation — effects on forest and fish. Final Report of the SNSF — Project 1972–1980. FR 19/80, Oslo, Norway. 175 pp.Google Scholar
  78. Persson, G. & O. Broberg, 1985. Nutrient concentrations in the acidified Lake Gårdsjön: the role of transport and retention of phosphorus, nitrogen and DOC in watershed and lake. Ecol. Bull. (Stockholm) 37: 158–175.Google Scholar
  79. Psenner, R., 1987. The role of sediments in the alkalinity production of alpine and subalpine lakes. Fourth Internat. Symposium on the Interactions between Sediments and Water. Melbourne, Australia, February 1987. Abstr. 114.Google Scholar
  80. Renberg, I., 1985. Influences of acidification on the sediment chemistry of Lake Gårdsjön, Sweden. Ecol. Bull. (Stockholm) 37: 246–250.Google Scholar
  81. Renberg, I. & J. E. Wallin, 1985. The history of the acidification of Lake Gårdsjön as deduced from diatoms and Sphagnum leaves in the sediment. Ecol. Bull. (Stockholm) 37: 47–52.Google Scholar
  82. Renberg, I. & M. Wik, 1985. Soot particle counting in recent lake sediments. An indirect dating method. Ecol. Bull. (Stockholm) 37: 53–57.Google Scholar
  83. Renberg, I., T. Hellberg & M. Nilsson, 1985. Effects of acidification on diatom communities as revealed by analyses of lake sediments. Ecol. Bull. (Stockholm) 37: 219–223.Google Scholar
  84. Reuss, J. O. & D. W. Johnson, 1985. Effect of soil processes on the acifidication of water by acid deposition. J. Environ. Qual. 14: 26–31.Google Scholar
  85. Reuss, J. O. & D. W. Johnson, 1986. Acid Deposition and the Acidification of Soils and Waters. Ecological Studies 59. Springer-Verlag New York Inc. 119 pp.Google Scholar
  86. Rippey, B., R. J. Murphy & S. W. Kyle, 1982. Anthropogenically derived changes in the sedimentary flux of Mg, Cr, Ni, Cu, Zn, Hg, Pb and P in Lough Neagh, Northern Ireland. Envir. Sci. Technol. 16: 23–30.Google Scholar
  87. Ryan, P. F., J. N. Galloway, B. J. Cosby, G. M. Hornberger & J. R. Webb, 1989. Seasonal and interannual variations in the chemical composition of streamwater in two catchments impacted by acidic deposition. Submitted for publication.Google Scholar
  88. Schindler, D. W., 1985. The coupling of elemental cycles by organisms: evidence from whole-lake chemical perturbations. Chapter 11. In W. Stumm (ed.). Chemical Processes in Lakes. John Wiley & Sons, New York: 225–250.Google Scholar
  89. Schindler, D. W., R. H. Hesslein, R. Wagemann & W. S. Broecker, 1980a. Effects of acidification on mobilization of heavy metals and radionuclides from the sediments of a freshwater lake. Can. J. Fish. Aquat. Sci. 37: 373–377.Google Scholar
  90. Schindler, D. W., R. Wagemann, R. B. Cook, T. Ruszczynski & J. Prokopowich, 1980b. Experimental acidification of Lake 223, Experimental Lakes Area: I. Background data and the first three years of acidification. Can. J. Fish. aquat. Sci. 37: 342–354.Google Scholar
  91. Schindler, D. W., M. A. Turner, M. P. Stainton & G. A. Linsey, 1986. Natural sources of acid neutralizing capacity in low alkalinity lakes of the Precambrian Shield. Science 232: 844–847.Google Scholar
  92. Schnoor, J. L. and W. Stumm, 1985. Acidification of aquatic and terrestrial systems. In W. Stumm (ed.). Chemical Processes in Lakes. John Wiley & Sons, New York: 311–338.Google Scholar
  93. Schafran, G. C. & C. T. Driscoll, 1989. Relationships between seepage chemistry and flowpaths through the near-shore sediments of an acidic lake. Submitted for publication.Google Scholar
  94. Schofield, C.-L., 1976. Acid precipitation: effects on fish. Ambio 5: 228–236.Google Scholar
  95. Sherman, J., 1985. Diatoms. In G. E. Likens (ed.). An Ecosystem Approach to Aquatic Ecology: Mirror Lake and its Environment. Springer-Verlag New York Inc.: 366–382.Google Scholar
  96. Smith, R. A., 1872. Air and Rain. The Beginnings of Chemical Climatology. Longmans, Green and Co., London. 600 pp.Google Scholar
  97. Smith, R. A. & R. B. Alexander, 1986. Correlations between stream sulphate and regional SO2 emissions. Nature 322: 722–724.Google Scholar
  98. Swank, W. T., J. W. Fitzgerald & J. T. Ash, 1984. Microbial transformation of sulfate in forest soils. Science 223: 182–184.Google Scholar
  99. Ulrich, B., R. Mayer & P. K. Khanna, 1980. Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Science 130: 193–199.Google Scholar
  100. Weathers, K. C., G. E. Likens, F. H. Bormann, J. S. Eaton, K. D. Kimball, J. N. Galloway, T. G. Siccama & D. Smiley, 1988. Chemical concentrations in cloud water from four sites in the eastern United States. In M. H. Unsworth and D. Fowler (eds.), Acid Deposition at High Elevation Sites. Kluwer Academic Publishers: 345–357.Google Scholar
  101. Whitehead, D. R., D. F. Charles, S. T. Jackson, S. E. Reed & M. C. Sheehan, 1986. Late-glacial and Holocene acidity changes in Adirondack (N.Y.) lakes. In J. P. Smol, R. W. Battarbee, R. B. Davis and J. Merilainen (eds.). Diatoms and Lake Acidity. Dr. W. Junk Publishers, Dordrecht: 251–274.Google Scholar
  102. Wright, R. F., 1983. Predicting acidification of North American lakes. Norwegian Inst. Water Research, Report No. 0-81036, Oslo. 165 pp.Google Scholar
  103. Wright, R. F., T. Dale, E. T. Gjessing, G. R. Hendrey, A. Henriksen, M. Johannessen & I. P. Muniz, 1976. Impact of acid precipitation on fresh-water ecosystems in Norway. In L. S. Dochinger and T. A. Seliga (eds.). Proc. of the First Internat. Symp. on Acid Precipitation and the Forest Ecosystem. USDA Forest Service General Tech. Report NE-23: 459–476.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Gene E. Likens
    • 1
  1. 1.Institute of Ecosystem StudiesThe New York Botanical GardenMillbrookUSA

Personalised recommendations