Advertisement

Hydrobiologia

, Volume 216, Issue 1, pp 319–325 | Cite as

Swimming movements of ctenophores, and the mechanics of propulsion by ctene rows

  • G. I. Matsumoto
Proceedings V. Pelagic coelenterates

Abstract

This study focuses on the mechanics of ciliary movement of ctenophores in relation to locomotion and feeding, with field and laboratory observations documented with 35 mm photographs and video sequences. Movement through the water is strongly modified by subtleties of body morphology. Whereas the entire ctenophore moves in a flow regime where the Reynolds numbers range from 100 to 6000, the cilia on the surface of the ctenophores move in a flow regime where the Reynolds numbers range only from 10 to 300. The water flow patterns seen by use of fluorescein dye do not match any current model of ciliary flow and assumptions for a new model are postulated. Ctenophores exhibit a wide variety of morphological adaptations that reduce drag, and a variety of behaviours that exploit fine-scale water movements for prey capture.

Key words

Leucothea Cestum Mertensia Beroe locomotion fluid mechanics feeding Reynolds number ciliary propulsion underwater video jet propulsion swimming ctene plate propulsion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blake, J. R., 1971. A note on the image system for a stokeslet in a no-slip boundary. Proc. Camb. phil. Soc. 70: 303–310.Google Scholar
  2. Blake, J. R., 1972. A model for the micro-structure in ciliated organisms. J. Fluid Mech. 55: 1–23.Google Scholar
  3. Blake, J. R., 1982. Mechanics of ciliary transport. In C. J. Brokaw & P. Verdugo (eds), Mechanism and control of ciliary movement. Cell Motility (Supplement 1), Alan R. Liss, Inc., N.Y.: 41–45.Google Scholar
  4. Blake, J. R. & M. A. Sleigh, 1974. Mechanics of ciliary locomotion. Biol. Rev. 49: 85–125.Google Scholar
  5. Greene, C. H., M. R. Landry & B. C. Monger, 1986. Foraging behavior and patterns of prey selection in the ambush-entangling predator Pleurobrachia bachei. Ecology 67: 1493–1501.Google Scholar
  6. Greve, W., J. Stockner & J. Fulton, 1976. Towards a theory of speciation in Beroe. In G. O. Mackie (ed.), Coelenterate Ecology and Behavior. Plenum Publishing Corp., N.Y.: 251–258.Google Scholar
  7. Hamner, W. M., 1975. Underwater observations of blue water plankton: logistics, techniques, and safety procedures for divers at sea. Limnol. Oceanogr. 20: 1045–1051.Google Scholar
  8. Hamner, W. M., S. W. Strand, G. I. Matsumoto & P. P. Hamner, 1987. Observations on foraging behavior of the ctenophore Leucothea sp. in the open sea. Limnol. Oceanogr. 32: 645–652.Google Scholar
  9. Harbison, G. R., L. P. Madin & N. R. Swanberg, 1978. On the natural history and distribution of oceanic ctenophores. Deep-Sea Res. 25: 233–256.Google Scholar
  10. Heine, J., 1986. Blue water diving guidelines. Calif. Sea Grant College Program Publication, La Jolla, #T-CSGCP-014, 46 ppGoogle Scholar
  11. Horridge, G. A., 1964. The giant mitochondria of ctenophore comb plates. Q. Jl. microsc. Sci. 105: 301–310.Google Scholar
  12. Keller, S. R., T. Y. Wu & C. Brennen, 1975. A traction layer model for ciliary propulsion. In T. Y. Wu, C. J. Brokaw & C. Brennen (eds), Swimming and flying in Nature, 1. Plenum Publishing Corp., N.Y.: 253–272.Google Scholar
  13. Kuhl, W., 1932. Rippenquallen beim Beutefang. Natur Mus., Frankf. 62: 130–133.Google Scholar
  14. Liron, N., 1982. Ciliary fluid transport: theory and experiment. In C. J. Brokaw & P. Verdugo (eds), Mechanism and control of ciliary movement. Cell Motility (Supplement 1), Alan R. Liss, Inc., N.Y.: 47–51.Google Scholar
  15. Lugt, H. J., 1983. Vortex flow in nature and technology. John Wiley & Sons, N.Y., 797 pp.Google Scholar
  16. Matsumoto, G. I. & W. M. Hamner, 1988. Modes of water manipulation by the lobate ctenophore Leucothea sp. Mar. Biol. 97: 551–558.Google Scholar
  17. Parker, G. H., 1905. The movements of the swimming plates in ctenophores, with reference to the theories of ciliary metachronism. J. exp. Zool. 2: 407–423.Google Scholar
  18. Sleigh, M. A., 1972. Features of ciliary movement of the ctenophores Beroe, Pleurobrachia, and Cestus. In R. B. Clark & R. Wooton (eds), Essays on Hydrobiology. Exeter University Press, Exeter: 119–136.Google Scholar
  19. Sleigh, M. A. & E. Aiello, 1972. The movement of water by cilia. In S. Dryl & J. Zurzycki (eds), Acta Protozool. 11: 265–277.Google Scholar
  20. Sleigh, M. A. & J. R. Blake, 1977. Methods of ciliary propulsion and their size limitations. In T. J. Pedley (ed.), Scale Effects in Animal Locomotion. Academic Press, N.Y.: 243–256.Google Scholar
  21. Tamm, S. L., 1973. Mechanisms of ciliary coordination in ctenophores. J. exp. Biol. 59: 231–245.Google Scholar
  22. Tamm, S. L., 1984. Mechanical synchronization of ciliary beating within comb plates of ctenophores. J. exp. Biol. 113: 401–408.Google Scholar
  23. Tamm, S. L. & A. G. Moss, 1985. Unilateral ciliary reversal and motor responses during prey capture by the ctenophore Pleurobrachia pileus. J. exp. Biol. 114: 443–462.Google Scholar
  24. Taylor, G. I., 1951. Analysis of the swimming of microscopic organisms. Proc. r. Soc., Lond. (Ser. A) 209: 447–461.Google Scholar
  25. Yates, G. T., 1986. How microorganisms move through water. Am. Scient. 74: 358–365.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • G. I. Matsumoto
    • 1
  1. 1.Department of BiologyUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations