Hydrobiologia

, Volume 167, Issue 1, pp 143–149 | Cite as

Response of harpacticoid copepods to habitat structure at a deep-sea site

  • David Thistle
  • James E. Eckman
Part Three: Oceanic and Deep-Se Copepods

Abstract

Given the quiescent physical environment and the low rates of bioturbation in the deep sea, biologically produced structures, such as animals tubes, may play an important role in creating habitat heterogeneity. In San Diego Trough, the cirratulid polychaete Tharyx luticastellus builds and inhabits a robust mud concretion (a mudball). Mudballs are abundant and persist after the worm has died or abandoned them. Our analysis of twelve 6.6-cm-diameter cores from 32° 51.02′ N, 117° 46.97′ W, taken with the submersible SEA CLIFF, indicate that one of 29 species of harpacticoids common in San Diego Trough is associated with Tharyx mudballs. This species (of the genus Heteropsyllus) responded only to mudballs containing worms, suggesting that any effects of the inanimate structure were not the cause of the association. We could detect no difference in bacterial numbers in sediments between control and occupied-mudball samples. This result suggests that the response does not result from gross differences in food levels near a mudball, but the possibility that there are differences in some preferred food cannot be discounted. An univestigated possibility is that Heteropsyllus responds to occupied mudballs because the worm's presence deters some (presumably small) predator.

Key words

deep-sea benthos harpacticoid copepods habitat structure Tharyx Heteropsyllus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller, J. Y. & R. C. Aller, 1986. Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic. Deep-Sea Res. 33: 755–790.Google Scholar
  2. Barham, E. G., N. J. Ayer Jr. & R. E. Boyce, 1967. Macrobenthos of the San Diego Trough: photographic census and observations from the bathyscaph, Trieste. Deep-Sea Res. 14: 773–784.Google Scholar
  3. Balkwill, D. L., D. P. Labeda & L. E. Casida, Jr., 1975. Simplified procedures for releasing and concentrating microorganisms from soil for transmission election microscopy viewing as thin-sectioned and frozen-etched preparations. Can. J. Microbiol. 21: 252–262.Google Scholar
  4. Barnett, P. R. O., 1968. Distribution and ecology of harpacticoid copepods of an intertidal mud flat. Int. Revue ges. Hydrobiol. Hydrogr. 53: 177–209.Google Scholar
  5. Bell, S. S. & L. D. Coen, 1982. Investigations of epibenthic meiofauna. I. Abundances on and repopulation of the tube caps of Diopatra cuprea (Polychaeta: Onuphidae) in a subtropical system. Mar. Biol. 67: 303–309.Google Scholar
  6. Bell, S. S. & K. Walters & J. C. Kern, 1984. Meiofauna from seagrass habitats: a review and prospectus for future research. Estuaries 7: 331–338.Google Scholar
  7. Bernstein, B. B., R. R. Hessler, R. Smith & P. A. Jumars, 1978. Spatial dispersion of benthic Foraminifera in the abyssal central North Pacific. Limnol. Oceanogr. 23: 401–416.Google Scholar
  8. Brown, B. W., Jr. & M. Hollander, 1977. Statistics: a biomedical introduction. Wiley, New York, 456 pp.Google Scholar
  9. Carman, K. R. & D. Thistle, 1985. Microbial food partitioning by three species of benthic copepods. Mar. Biol. 88: 143–148.Google Scholar
  10. Coull, B. C., 1972. Species diversity and faunal affinities of meiobenthic Copepoda in the deep sea. Mar. Biol. 14: 48–51.Google Scholar
  11. Eckman, J. E., 1985. Flow disruption by an animal-tube mimic affects sediment bacterial colonization. J. mar. Res. 43: 419–435.Google Scholar
  12. Eckman, J. E. & A. R. M. Nowell, 1984. Boundary skin friction and sediment transport about an animal-tube mimic. Sedimentology 31: 851–862.Google Scholar
  13. Emery, K. O., 1960. The sea off southern California: a modern habitat for petroleum. Wiley & Sons, New York, 366 pp.Google Scholar
  14. Gooday, A., 1984. Records of deep-sea rhizopod tests inhabited by metazoans in the North-east Atlantic. Sarsia 69: 45–53.Google Scholar
  15. Hicks, G. R. F., 1977. Species associations and seasonal population densities of marine phytal harpacticoid copepods from Cook Strait. N. Z. J. mar. freshwater Res. 11: 621–643.Google Scholar
  16. Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.Google Scholar
  17. Jumars, P. A., 1974. Dispersion patterns and species diversity of macrobenthos in two bathyal communities. Ph. D. dissertation, Univ. Calif., San Diego. 204 pp.Google Scholar
  18. Jumars, P. A., 1975a. Environmental grain and polychaete species' diversity in a bathyal benthic community. Mar. Biol. 30: 253–266.Google Scholar
  19. Jumars, P. A., 1975b. Target species for deep-sea studies in ecology, genetics, and physiology. Zool. J. inn. Soc. 57: 341–348.Google Scholar
  20. Jumars, P. A., 1976. Deep-sea species diversity: does it have a characteristic scale? J. mar. Res. 34: 217–246.Google Scholar
  21. Jumars, P. A. & A. R. M. Nowell, 1984. Fluid and sediment effects on marine benthic community structure. Am. Zool. 24: 45–55.Google Scholar
  22. Kern, J. C. & G. L. Taghon, 1986. Can passive recruitment explain harpacticoid copepod distributions in relation to epibenthic structure? J. exp. mar. Biol. Ecol. 101: 1–24.Google Scholar
  23. Kitchell, J. A., J. F. Kitchell, D. L. Clark & L. Dangeard, 1978. Deep-sea foraging behavior: its bathymetric potential in the fossil record. Science, New York 200: 1289–1291.Google Scholar
  24. Montagna, P. A., 1982. Sampling design and enumeration statistics for bacteria extracted from marine sediments. Appl. envir. Microbiol. 43: 1366–1372.Google Scholar
  25. Montagna, P. A., 1984. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Mar. Ecol. Prog. Ser. 18: 119–130.Google Scholar
  26. Noodt, W., 1971. Ecology of the Copepoda. Smithson. Contr. Zool. 76: 97–102.Google Scholar
  27. Rieper, M., 1982. Feeding preferences of marine harpacticoid copepods for various species of bacteria. Mar. Ecol. Prog. Ser. 7: 303–307.Google Scholar
  28. Rex, M. A., 1981. Community structure in the deep-sea benthos. Annu. Rev. Ecol. Syst. 12: 331–353.Google Scholar
  29. Rotenberry, J. T. & J. A. Wiens, 1985. Statistical power analysis and community-wide patterns. Am. Nat. 125: 164–168.Google Scholar
  30. Smith, K. L., Jr. & R. R. Hessler, 1974. Respiration of benthopelagic fishes: in situ measurements at 1 230 meters. Science, New York 184: 72–73.Google Scholar
  31. Smith, K. L., Jr. & G. A. White, 1982. Ecological energetic studies in the deep-sea benthic boundary layer: in situ respiration studies. In W. G. Ernst & J. G. Morin (eds), The environment of the deep sea. Prentice-Hall, Englewood Cliffs (NJ): 279–300.Google Scholar
  32. Sokal, R. R. & F. J. Rohlf, 1981. Biometry. W. H. Freeman and Co., San Fransisco, 859 pp.Google Scholar
  33. Tate, M. W. & R. C. Clelland, 1957. Nonparametric and shortcut statistics. Interstate: Danville, Illinois, 171 pp.Google Scholar
  34. Thistle, D., 1977. Harpacticoid copepods: a problem in deep-sea diversity maintenance. Ph. D. Dissertation. University of California, San Diego. 169 pp.Google Scholar
  35. Thistle, D., 1978. Harpacticoid dispersion patterns: implications for deep-sea diversity maintenance. J. mar. Res. 36: 377–397.Google Scholar
  36. Thistle, D., 1979a. Deep-sea harpacticoid copepod diversity maintenance: the role of polychaetes. Mar. Biol. 52: 371–376.Google Scholar
  37. Thistle, D., 1979b. Harpacticoid copepods and biogenic structures: implications for deep-sea diversity maintenance. In R. J. Livingston (ed.), Ecological processes in coastal and marine systems. Plenum, New York: 217–231.Google Scholar
  38. Thistle, D., 1982. Aspects of the natural history of the harpacticoid copepods of San Diego Trough. Biol. Oceanogr. 1: 225–238.Google Scholar
  39. Thistle, D., J. Y. Yingst & K. Fauchald, 1985. A deep-sea benthic community exposed to strong near-bottom currents on the Scotia Rise (western Atlantic). Mar. Geol. 66: 91–112.Google Scholar
  40. Thistle, D., J. A. Reidenauer, R. H. Findlay & R. Waldo, 1984. An experimental investigation of enhanced harpacticoid (Copepoda) abundances around isolated seagrass shoots. Oecologia 63: 295–299.Google Scholar
  41. Wetherill, G. B., 1967. Elementary statistical methods. Methuen, London, 329 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • David Thistle
    • 1
  • James E. Eckman
    • 2
  1. 1.Department of OceanographyFlorida State UniversityTallahasseeUSA
  2. 2.Skidaway Institute of OceanographySavannahUSA

Personalised recommendations