Hydrobiologia

, Volume 235, Issue 1, pp 573–584 | Cite as

Whole-stream phosphorus release studies: variation in uptake length with initial phosphorus concentration

  • Barry T. Hart
  • Paul Freeman
  • Ian D. McKelvie
Element cycling

Abstract

A new dual channel flow injection analyser that can simultaneously analyse soluble reactive phosphorus and bromide in the field, has been used in an experiment to test the hypothesis that the phosphorus uptake length in Myrtle Creek, a small forested stream in the Australian Highlands, is influenced by the initial phosphorus concentration used in whole-stream release studies. The phosphorus uptake length was found to decrease with decreasing initial phosphorus concentration added; the uptake length was 98 m when an initial P concentration of 51.0 µg 1−1 was used, 90 m with 21.7 µg 1−1 and 63 m with 12.7 µg 1−1. The estimated errors in the uptake lengths were 6–8%. Approximately 32% of the added phosphorus was retained in the 32 m study reach, with almost all (ca. 93%) of this retained phosphorus taken up by the sediments (microbial uptake plus physico-chemical adsorption) and only a small amount retained in transient storage zones.

Key words

Phosphorus uptake length sediment flow injection analysis stream Australia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulou, P. I. & M. A. Koupparis, 1986. Automated flow-injection phenol red method for the determination of bromide and bromide salts in drugs. Analyt. Chem. 58: 322–326.Google Scholar
  2. Bevington, P. R., 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw Hill, Sydney.Google Scholar
  3. Boulton, A. J. & P. S. Lake, 1990. The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analysis of physicochemical features, Freshwat. Biol. 24: 123–141.Google Scholar
  4. Campbell, I. C., K. R. James, B. T. Hart & A. Devereaux, 1991. Processing coarse particulate organic material in forest and pasture reaches of two south eastern Australian streams, I. Litter accession. Freshwat. Biol. (in press).Google Scholar
  5. Clinch, J. R., P. J. Worsfold & H. Casey, 1987. An automated spectrophotometric field monitor for water quality parameters. Determination of nitrate Analyt. Chim. Acta 200 523–531.Google Scholar
  6. Elwood, J. W., J. D. Newbold, R. V. O'Neill & W. Van Winkle, 1983. Resource spiralling: an operational paradigm for analysing lotic ecosystems. In T. D. Fontine & S. M. Bartell (eds), Dynamics of Lotic Ecosystems, Ann Arbor Sci. Publ., Ann Arbor.Google Scholar
  7. Freeman, P. R., I. D. McKelvie, B. T. Hart & T. J. Cardwell, 1990. A flow injection analysis method for determination of low levels of phosphorus in natural waters. Analyt. Chim. Acta. 234: 409–416.Google Scholar
  8. Freeman, P. R., B. T. Hart & I. D. McKelvie, 1992. A dual channel FIA method for determination of low levels of phosphorus and bromide in natural waters. Analyt. Chim. Acta. (submitted).Google Scholar
  9. Froelich, P. N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol. Oceanog. 33: 649–668.Google Scholar
  10. Hart, B. T., P. Freeman, I. D. McKelvie, S. Pearse & D. G. Ross, 1990. Phosphorus spiralling in Myrtle Creek, Victoria, Australia. Verh. int. Ver. Limnol. 24: 2065–2070.Google Scholar
  11. Hart, B. T., P. Freeman, 1. D. McKelvie & S. Pearse, 1991. Phosphorus uptake in Myrtle Creek, Australia. Freshwat. Res. (submitted).Google Scholar
  12. Lake, P. S., 1982. Ecology of the macroinvertebrates of Australian upland streams — A review of current knowledge, Bull. Aust. Soc. Limnology 8: 1–15.Google Scholar
  13. McDowell, W. H. & G. E. Likens, 1988. Origin, composition and flux of dissolved organic carbon in the Hubbard Brook valley. Ecol. Monographs 58: 177–195.Google Scholar
  14. McKelvie, I. D., B. T. Hart, T. J. Cardwell & R. W. Cattrall, 1989. Spectrophotometric determination of dissolved organic phosphorus in natural waters using in-line photo-oxidation and flow injection. Analyst 114: 1459–1463.Google Scholar
  15. McMahon, T. A., B. L. Finlayson, A. T. Haines & R. Srikanthan, 1991. Global Runoff. Continential Comparison of Annual Flow and Peak Discharges, Catena, Kemlinger, Germany.Google Scholar
  16. Meyer, J. L., 1986. Dissolved organic carbon dynamics in two subtropical blackwater rivers. Arch. Hydrobiol. 108: 119–134.Google Scholar
  17. Meyer, J. L., 1990. A blackwater perspective on riverine ecosystems. BioScience 40: 643–650.Google Scholar
  18. Meyer, J. L. & G. E. Likens, 1981. Transport and transformation of phosphorus in a forest stream ecosystem. Ecology 60: 1255–1269.Google Scholar
  19. Meyer, J. L., W. H. McDowell, T. L. Bott, J. W. Elwood, C. Ishizaki, J. M. Melack, B. L. Peckarsky, B. J. Peterson & P. A. Rublee, 1988. Elemental dynamics in streams. J. N. Am. Benthol. Soc. 7: 410–432.Google Scholar
  20. Mulholland, P. J., A. D. Steinman & J. W. Elwood, 1990. Measurement of phosphorus uptake length in streams: comparison of radiotracer and stable PO4 releases, Can. J. Fish. aquat. Sci. 47: 2351–2357.Google Scholar
  21. Mulholland, P. J., J. D. Newbold, J. W. Elwood, L. A. Ferren & J. R. Webster, 1985. Phosphorus spiralling in a woodland stream: Seasonal variations. Ecology 66: 1012–1023.Google Scholar
  22. Newbold, J. D., J. W. Elwood, R. V. O'Neill & V. Van Winkle, 1981. Measuring nutrient spiralling in streams. Can. J. Fish. aquat. Sci. 38: 860–863.Google Scholar
  23. Newbold, J. D., J. W. Elwood, R. V. O'Neill & A. L. Sheldon, 1983a. Phosphorus dynamics in a woodland stream ecosystem: a study of nutrient spiralling. Ecology 64: 1249–1265.Google Scholar
  24. Newbold, J. D., J. W. Elwood, M. S. Schulze, R. W. Stark & J. C. Barmeier, 1983b. Continuous ammonium enrichment of a woodland stream: Uptake kinetics, leaf decomposition and nitrification. Freshwat. Biol. 13: 193–204.Google Scholar
  25. Newbold, J. D., P. J. Mulholland, J. W. Elwood & R. V. O'Neill, 1982. Organic carbon spiralling in stream ecosystems. Oikos 38: 266–272.Google Scholar
  26. Richey, J. S., W. H. McDowell & G. E. Likens, 1985. Nitrogen transformations in a small mountain stream. Hydrobiol. 124: 129–139.Google Scholar
  27. Ruzicka, J. & E. H. Hansen, 1988. Flow Injection Analysis, 2nd edn. Wiley Interscience, New York.Google Scholar
  28. Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989a. Retention and transport of nutrients in a third-order stream in northwestern California: Hyporheic processes. Ecology 70: 1893–1905.Google Scholar
  29. Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989b. Retention and transport of nutrients in a third-order stream: Channel processes. Ecology 70: 1877–1892.Google Scholar
  30. Stream Solute Workshop, 1990. Concepts and methods for assessing solute dynamics in stream ecosystems. J. N. Am. Benthol. Soc. 9: 95–119.Google Scholar
  31. Worsfold, P. J., J. R. Clinch & H. Casey, 1987. Spectrophotometric field monitor for water quality parameters. The determination of phosphate. Analyt. chim. Acta 197: 43–50.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Barry T. Hart
    • 1
  • Paul Freeman
    • 1
  • Ian D. McKelvie
    • 1
  1. 1.Water Studies Centre and Department of ChemistryMonash UniversityMelbourneAustralia

Personalised recommendations