, Volume 255, Issue 1, pp 59–70 | Cite as

Rotifers in aging research: use of rotifers to test various theories of aging

  • Hildegard E. Enesco


Four theories of aging are discussed to examine how effectively they might explain the aging process in rotifers. One of the early theories, the rate of living theory of aging can perhaps be discounted. Although the theory predicts that increased biological energy expenditure, in the form of increased activity or reproduction, would lead to a shorter lifespan, these predictions are not born out by experimental evidence. At the whole animal level, a case can be made for a theory of programmed aging, where the end of reproduction signals the end of the lifespan. Support for this view comes from the observation that lifespan is positively correlated with reproductive parameters, that treatments that extend lifespan usually act to extend the reproductive period, and that the end of reproduction is associated with high mortality and senescent biochemical changes. Two molecular theories of aging are also discussed; the free radical theory of aging and the calcium theory of aging. These theories point to the fact that molecular damage accumulates and that calcium influx increases in the course of aging. When free radical buildup or calcium homeostasis is reduced, lifespan is extended. A molecular explanation of aging does not necessarily exclude the idea of programmed aging. It is probable that an eventual understanding of the aging process will rest on both a physiological and molecular basis.

Key words

rotifers aging theories of aging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arking, R. & S. P. Dudas, 1989. Review of genetic investigations into the aging process of Drosophila. J. Am. Geriatr. Soc. 37: 757–773.PubMedGoogle Scholar
  2. Barrows, C. H. & G. C. Kokkonen, 1985. Rotifers. In: Non-mammalian models for research on aging. Interdisipl. Topics Geront. 21: 188–200.Google Scholar
  3. Beauvais, J. E. & H. E. Enesco, 1985. Lifespan and agerelated changes in activity level of the rotifer Asplanchna brightwelli: influence of curare. Exp. Gerontol. 20: 359–366.PubMedGoogle Scholar
  4. Begon, M. & M. Mortimer, 1986. Population ecology, 2nd ed. Sinauer Associates, Sunderland, Mass. 220 pp.Google Scholar
  5. Bell, G., 1984. Measuring the cost of reproduction I. The correlation structure of the life table of a plankton rotifer. Evolution 38: 300–313.Google Scholar
  6. Bell, G., 1986. Reply to Reznick et al. Evolution 10: 1344–1346.Google Scholar
  7. Bell, G. & V. Koufopanou, 1986. The cost of reproduction. Oxford Surveys of Evolutionary Biology, Vol. 3, Oxford University Press, Oxford, U.K.: 83–131.Google Scholar
  8. Bernstein, C. & H. Bernstein, 1991. Aging, sex and DNA repair. Academic Press, N.Y. 382 pp.Google Scholar
  9. Bozovic, V. & H. E. Enesco, 1986. Effects of antioxidants on rotifer lifespan and activity. Age 9: 41–45.Google Scholar
  10. Bozovic, V. & H. E. Enesco, 1989. Cortisone extends lifespan in the rotifer Asplanchna brightwelli. Arch. Gerontol. Geriatr. 9: 45–51.PubMedGoogle Scholar
  11. Campbell, K. P., A. T. Leung, & A. H. Sharp, 1968. The biochemistry and molecular biology of the dihydropyrididnesensitive calcium channel. Trends in neuroscience. 10: 425–430.Google Scholar
  12. Carafoli, E., 1987. Intracellular calcium homeostasis. Ann. Rev. Biochem. 56: 395–433.CrossRefPubMedGoogle Scholar
  13. Carmona, M. J., A. Serra, & M. R. Miracle, 1989. Protein patterns in rotifers: the timing of aging. In C. Ricci, T. W. Snell & C. E. King (eds), Rotifer Symposium V. Developments in Hydrobiology 52. Kluwer Academic Publishers, Dordrecht: 325–330. Reprinted from Hydrobiologia 186/187.Google Scholar
  14. Carmona, M. J., M. Serra & M. R. Miracle, 1992. Relationships between mixis in Brachionus plicatilis and preconditioning of culture medium by crowding. Proceedings of VI International Rotifer Symposium, Banyoles, Spain.Google Scholar
  15. Comfort, A., 1979. The biology of senescence, 3rd edn. Elsevier North Holland, N.Y., 414 pp.Google Scholar
  16. Enesco, H. E., V. Bozovic & P. D. Anderson, 1989. The relationship between lifespan and reproduction in the rotifer Asplanchna brfghtwelli. Mech. Ageing Dev. 48: 281–289.CrossRefPubMedGoogle Scholar
  17. Enesco, H. E. & D. Mahoney, 1981. Age related decrease in nuclear and nucleolar size in hypodermal cells of the rotifer. Exp. Geront. 16: 41–45.Google Scholar
  18. Enesco, H. E., A. McTavish & R. Garberi, 1990. Spontaneous activity level and lifespan in rotifers: Lack of support for the rate of living theory. Gerontology 36: 256–261.PubMedGoogle Scholar
  19. Enesco, H. E. & C. Verdone-Smith, 1980. α-Tocopherol increases lifespan in the rotifer Philodina. Exp. Geront. 15: 335–338.CrossRefGoogle Scholar
  20. Enesco, H. E., A. Wolanskyj & M. Sawada, 1988. Effect of copper on lifespan and lipid peroxidation in rotifers. Age. 12: 19–23.Google Scholar
  21. Epp, R. W. & W. M. Lewis, Jr., 1984. Cost and speed of locomotion in rotifers. Oecologia 61: 289–292.Google Scholar
  22. Fanestil, D. D. & C. H. Barrows, 1965. Aging in the rotifer. J. Gerontol. 20: 462–469.PubMedGoogle Scholar
  23. Finch, C. E., 1990. Longevity, senescence and the genome. Univ. Chicago Press, Chicago 922 pp.Google Scholar
  24. Gilbert, J. J. & A. Thompson, 1968. Alpha tocopherol control of sexuality and polymorphism in the rotifer Asplanchna. Science 159: 734–736.PubMedGoogle Scholar
  25. Gilbert, J. J., 1973. Induction and ecological significance of gigantism in the rotifer Asplanchna sieboldi. Science 181: 63–66.Google Scholar
  26. Gilbert, J. J., 1974. Effect of tocopherol on the growth and development of rotifers. Am. J. Clin. Nutr. 27: 1005–1016.PubMedGoogle Scholar
  27. Harman, D., 1956. Aging: a theory based on free-radicals and radiation chemistry. J. Gerontol. 11: 298–300.PubMedGoogle Scholar
  28. Hart, R. W. & A. Turturro, 1983. Theories of aging. In Review Biol. Aging Research. 1: 5–17, Alan R. Liss Inc., N.Y.Google Scholar
  29. Herold, R. C. & N. D. Meadow, 1970. Age related changes in ultrastructure and histochemistry of rotiferan organs. J. Ultrastruct. Res. 33: 203–218.PubMedGoogle Scholar
  30. Jennings, H. S. & R. S. Lynch, 1928. Age, mortality, fertility and individual diversity in the rotifer Proales sordida Gosse. J. exp. Zool. 51: 339–381.Google Scholar
  31. Khachaturian, Z. S., 1987. Hypothesis on the regulation of cytosol calcium concentrations and the aging brain. Neurobiol. Aging 8: 345–346.PubMedGoogle Scholar
  32. Khachaturian, Z. S., 1989. The role of calcium regulation in brain aging: reexamination of a hypothesis. Aging 1: 17–34.PubMedGoogle Scholar
  33. King, C. E., 1969. Experimental studies on ageing in rotifers. Exp. Gerontol. 4: 63–79.PubMedGoogle Scholar
  34. King, C. E. & M. R. Miracle, 1980. A perspective on aging in rotifers. In H. J. Dumont & J. Green (eds), Rotatoria. Developments in Hydrobiology I. Dr W. Junk Publishers, The Hague: 13–19. Reprinted from Hydrobiologia 73.Google Scholar
  35. King, C. E., 1982. The evolution of life span. In H. Dingle & J. P. Hegmann (eds), Evolution and genetics of life histories, Springer-Verlag, N.Y.: 121–138.Google Scholar
  36. King, C. E., 1983. A re-examination of the Lansing Effect. In B. Pejler, R. Starkweather & Th. Nogrady (eds), Biology of Rotifers. Developments in Hydrobiology 14. Dr W. Junk Publishers, The Hague: 135–139. Reprinted from Hydrobiologia 104.Google Scholar
  37. Lansing, A. I., 1942. Some effects of hydrogen ion concentration, total salt concentration, calcium and citrate on longevity and fecundity in the rotifer. J. exp. Zool. 91: 195–211.Google Scholar
  38. Lansing, A. I., 1964. Age variations in the cortical membranes of rotifers. J. Cell. Biol. 23: 403–422.PubMedGoogle Scholar
  39. Lints, F. A., 1989. The rate of living theory revisited. Gerontology 35: 36–57.PubMedGoogle Scholar
  40. Litton, J. R., 1987. Specificity of the α-tocopherol (Vitamin E) effect on lifespan and fecundity of bdelloid rotifers. In L. May R. Wallace & A. Herzig (eds), Rotifer Symposium IV. Developments in Hydrobiology 42. Dr. W. Junk Publishers, Dordrecht: 135–139. Reprinted from Hydrobiologia 147.Google Scholar
  41. Loeb, J. & H. H. Northrop, 1917. On the influence of food and temperature on the duration of life. J. Biol. Chem. 32: 102–121.Google Scholar
  42. Makman, M. H. & G. B. Stefano, 1984. Murine muscles and cephalopods as models for study of neuronal aging. In D. H. Mitchel & T. E. Johnson (eds), Invertebrate Models in Aging Research. CRC Press, Boca Raton: 165–189.Google Scholar
  43. McTavish, A., M. Sawada & H. E. Enesco, 1990. Nifedipine influences rotifer lifespan: Studies on the calcium theory of aging. Age 13: 65–71.Google Scholar
  44. Meadow, N. D. & C. H. Barrows, 1971. Studies on ageing in a bdelloid rotifer. Il. The effects of various environmental conditions and maternal age on longevity and fecundity. J. Gerontol. 26: 302–309.PubMedGoogle Scholar
  45. Pearl, R., 1928. The rate of living. Knopf, N.Y. 235 pp.Google Scholar
  46. Plate, L., 1886. Beiträge zur Naturgeschichte der Rotatorien. Jena z.f. Naturwiss. 19: 1–120.Google Scholar
  47. Reznick, D., 1985. Costs of reproduction: An evaluation of the empirical evidence. Oikos 44: 257–267.Google Scholar
  48. Reznick, D. N., E. Perry & J. Travis, 1986. Measuring the cost of reproduction: A comment on papers by Bell. Evolution 40: 1338–1344.Google Scholar
  49. Rosseter, T. B., 1884. Observation on the life history of Sephanoceros eichhomii. J.r. micros. Soc. 4: 80–84.Google Scholar
  50. Rougier, C. & R. Pourriot, 1977. Aging and control of reproduction in Brachionus calycifiorus (Pallas) (Rotatoria). Exp. Geront. 12: 137–151.Google Scholar
  51. Sawada, M. & J. C. Carlson, 1985. Association of lipid peroxidation during luteal regression in the rat and natural aging in the rotifer. Exp. Geront. 20: 179–186.Google Scholar
  52. Sawada, M. & J. C. Carlson, 1987. Association between lipid peroxidation and life-modifying factors in rotifers. J. Geront. 42: 451–456.PubMedGoogle Scholar
  53. Sawada, M. & J. C. Carlson, 1990. Biochemical changes associated with the mechanism controlling superoxide radical formation in the aging rotifer. J. Cellular Biochem. 44: 153–165.Google Scholar
  54. Sawada, M., J. C. Carlson, & H. E. Enesco, 1990. The effects of UV radiation and antioxidants on lifespan and lipid peroxidation in the rotifer Asplanchna brightwelli. Arch. Gerontol. Geriatr. 10: 27–36.PubMedGoogle Scholar
  55. Sawada, M. & H. E. Enesco, 1984a. Vitamin E extends the lifespan of the short-lived rotifer Asplanchna brightwelli. Exp. Geront. 19: 179–183.Google Scholar
  56. Sawada, M. & H. E. Enesco, 1984b. A study of dietary restriction and lifespan in the rotifer Asplanchna brightwelli monitored by chronic neutral red exposure. Exp. Geront. 19: 329–334.Google Scholar
  57. Schneider, E. L., 1987. Theories of aging: A perspective. In H. R. Warner, R. N. Butler, R. L. Sprott & E. L. Schneider. Modern Biological Theories of Aging, Raven Press, New York: 1–4.Google Scholar
  58. Service, P. M., 1989. The effect of mating status on lifespan, egg laying and starvation resistance in Drosophila melanogaster in relation to selection on longevity. J. Insect Physiol. 35: 447–452.Google Scholar
  59. Sincock, A. M. 1974. Calcium and aging in the rotifer Mytilina brevispina var redunca. J. Gerontol. 29: 514–517.PubMedGoogle Scholar
  60. Sincock, A. M. 1975. Life extension in the rotifer Mytilina brevispina var redunca by the application of chelating agents. J. Gerontol. 30: 289–293.PubMedGoogle Scholar
  61. Snell, T. W., J. Childress & B. C. Winkler, 1988. Characteristics of the mate recognition factor in the rotifer Brachionus plicatilis. Comp. Biochem. Physiol. 89A: 481–485.Google Scholar
  62. Snell, T. W. & C. E. King, 1977. Lifespan and fecundity patterns in rotifers: The cost of reproduction. Evolution 31: 882–890.Google Scholar
  63. Snell, T. W. & M. A. Nacionales, 1990. Sex pheromone communication in Brachionus plicatilis (Rotifera). Comp. Biochem. Physiol. 97 A: 221–216.Google Scholar
  64. Spemann, F. W., 1924. Uber Lebensdauer. Altem and andere Fragen der Rotatorien — Biologie. Z. Wiss. Zool. 123: 136.Google Scholar
  65. Stemberger, R. S. & J. J. Gilbert, 1987. Rotifer threshold food concentrations and the size-efficiency hypothesis. Ecology 68: 181–187.Google Scholar
  66. Trump, B. F., I. K. Berezesky, T. Sato, K. V. Laiho, P. C. Phelps & N. Declaris, 1984. Cell calcium, cell injury and cell death. Envir. Health Perspec. 57: 281–287.Google Scholar
  67. Uchiyama, M. & M. Mihara, 1978. Determination of malonaldehyde precursor in tissues by the thiobarbituric acid test. Analyt. Biochem. 86: 271–278.PubMedGoogle Scholar
  68. Verdone-Smith, C., 1981. The effects of temperature and dietary restriction on aging and reproductive patterns in the rotifer Asplanchna brightwelli, Gosse. M. Sc. thesis, Concordia University, Montreal.Google Scholar
  69. Verdone-Smith, C. & H. E. Enesco, 1982. The effect of temperature and of dietary restriction on lifespan and reproduction in the rotifer Asplanchna bnghtwelli. Exp. Geront. 17: 255–262.Google Scholar
  70. Weindruch, R. & R. L. Walford, 1988. The retardation of aging and disease by dietary restriction.Charles C. Thomas, Springfield, Ill., 436 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Hildegard E. Enesco
    • 1
  1. 1.Department of BiologyConcordia UniversityMontrealCanada

Personalised recommendations