, Volume 165, Issue 1, pp 1–11 | Cite as

The ecology of photosynthetic bacteria in Burton Lake, Vestfold Hills, Antarctica

  • C. M. Burke
  • H. R. Burton


Photosynthetic bacteria in Burton Lake, a seasonally tidal, meromictic lake of maximum depth 18 m, located in the Vestfold Hills, Antarctica, were studied throughout 1983. The dominant species were Chlorobium vibrioforme and Chlorobium limicola (up to 5.4 × 106 cells ml−1) and minor species were Thiocapsa roseopersicina (< 1.25 × 105 cells ml−1) and Rhodopseudomonas palustris (< 100 cells ml−1). The Chlorobium spp. and T. roseopersicina were found throughout the anoxic water, which ranged in temperature from −0.5°C to −2.2°C, but did not form discrete layers at the O2−H2S interface. The growth zone, however, of the Chlorobium spp. was delineated by the presence of light and H2S and was restricted to less than 3 m below the O2−H2S interface. R. palustris was found in oxic and anoxic water. Available light, which varied from 0–4.9µE m−2 s−1 at the O2−H2S interface, was considered to be the major environmental factor controlling growth of the bacterial phototrophs. Growth was initiated in spring in low light levels (< 1 µE m−2 s−1) following 3 months of darkness during winter. It is concluded that the dominance of the Chlorobium spp. was a result of their more efficient maintenance metabolism in winter and of their greater efficiency in utilizing low intensity light.

Key words

photosynthetic bacteria meromictic Chlorobium Antarctica Burton Lake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abella, C., E. Montesinos & R. Guerrero, 1980. Field studies on the competition between purple and green sulphur bacteria for available light (Lake Siso, Spain). In M. Dokulil, H. Metz & D. Jewson (eds), Developments in Hydrobiology, 3. Dr W. Junk Publishers, The Hague: 173–181.Google Scholar
  2. Bayly, I. A. E., 1986. Ecology of the zooplankton of a meromictic antarctic lagoon with special reference to Drepanopus bispinosus (Copepoda: Calanoida). Hydrobiologia 140: 199–231.Google Scholar
  3. Biebl, H. & N. Pfennig, 1978. Growth yields of green sulphur bacteria in mixed cultures with sulphur and sulphate reducing bacteria. Arch. Microbiol. 117: 9–16.Google Scholar
  4. Biebl, H. & N. Pfennig, 1981. Isolation of members of the Rhodospirillaceae. In M. P. Starr, H. Stolp, H. G. Truper, A. Ballows & H. G. Schlegel (eds), The Prokaryotes 1. Springer-Verlag, Berlin: 267–273.Google Scholar
  5. Burke, C. M. & H. R. Burton, this volume. Photosynthetic bacteria in meromictic lakes and stratified fjords of the Vestfold Hills, Antarctica. Hydrobiologia.Google Scholar
  6. Burton, H. R. & J. M. Ferris, 1983. Calculations of in situ density values for salt lakes. In A. R. Chivas & P. De Deckker (coordinators), Salt Lakes, Evaporites and Aeolian Deposits (SLEADS) workshop 83, Salt Lakes in Arid Australia. Australian National University, Canberra: 9–10.Google Scholar
  7. Clark, A. E. & A. E. Walsby, 1978. The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake. Arch. Microbiol. 118: 229–233.Google Scholar
  8. Caldwell, D. E. & J. M. Tiedje, 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can. J. Microbiol. 21: 377–385.Google Scholar
  9. Croome, R. L. & P. A. Tyler, 1984. Microbial microstratification and crepuscular photosynthesis in meromictic Tasmanian lakes. Verh. int. Ver. Limnol. 22: 1695–1701.Google Scholar
  10. Fonselius, S. H., 1983. Determination of hydrogen sulphide. In K. Grasshoff, M. Erhardt & K. Kremling (eds), Methods of Seawater Analysis, second edition. Verlag Chemie, GmbH Weinheim: 73–80.Google Scholar
  11. Gorlenko, V. M. & E. M. Chebotarev, 1981. Microbiological processes in the meromictic Lake Sakovo. Microbiology 50: 98–102.Google Scholar
  12. Gorlenko, V. M., E. N. Chebotarev & V. I. Kachalkin, 1974. Microbial oxidation of hydrogen sulphide in Lake Veisovo (Slavyansk Lake). Microbiology 43: 450–453.Google Scholar
  13. Guerrero, R., E. Montesinos, I. Esteve & C. Abella, 1980. Physiological adaptation and growth of purple and green sulphur bacteria in a meromictic lake (Vila) as compared to a holomictic lake (Siso). In M. Dokulil, H. Metz & D. Jewson (eds), Developments in Hydrobiology, 3. Dr W. Junk, Publishers, The Hague: 161–171.Google Scholar
  14. Hand, R. M., 1980. Bacterial populations of two saline antarctic lakes. In P. A. Trudinger & M. R. Walter (eds), Biogeochemistry of Ancient and Modern Environments. Aust. Acad. Sci., Canberra: 123–129.Google Scholar
  15. Hand, R. M. & H. R. Burton, 1981. Microbial ecology of an antarctic saline meromictic lake. Hydrobiologia 82: 363–374.Google Scholar
  16. Herbert, R. A. & A. C. Tanner, 1977. The isolation and characteristics of photosynthetic bacteria (Chromatiaceae and Chlorobiaceae) from antarctic marine sediments. J. appl. Bact. 43: 437–445.Google Scholar
  17. Journal of Glaciology, 1958. Instruments and methods: Ice drills and corers. J. Glaciol. 3: 30.Google Scholar
  18. Kriss, A. E., I. N. Mitskevich, E. P. Rozanova & L. K. Osnitskaya, 1976. Microbial investigations of Lake Vanda (Antarctica). Microbiology 45: 917–922.Google Scholar
  19. Lawrence, J. R., R. C. Haynes & U. T. Hammer, 1978. Contribution of photosynthetic green sulphur bacteria to total primary production in a meromictic saline lake. Verh. int. Ver. Limnol. 20: 201–207.Google Scholar
  20. Lindholm, T., K. Weppling & H. S. Jensen, 1984. Stratification and primary production in a small brackish lake studied by close-interval siphon sampling. Verh. int. Ver. Limnol. 22: 2190–2194.Google Scholar
  21. Maykut, G. A. & T. C. Grenfell, 1975. The spectral distribution of light beneath first-year sea-ice in the Arctic Ocean. Limnol. Oceanogr. 20: 554–563.Google Scholar
  22. Montesinos, E., R. Guerrero, C. Abella & I. Esteve, 1983. Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl. envir. Microbiol. 46: 1007–1016.Google Scholar
  23. Parker, R. D., J. R. Lawrence & U. T. Hammer, 1983. A comparison of phototrophic bacteria in two adjacent saline meromictic lakes. Hydrobiologia 105: 53–61.Google Scholar
  24. Parkin,T. B. & T. D. Brock, 1980a. Photosynthetic bacterial production in lakes: The effects of light intensity. Limnol. Oceanogr. 25: 711–718.Google Scholar
  25. Parkin, T. B. & T. D. Brock, 1980b. The effects of light quality on the growth of phototrophic bacteria in lakes. Arch. Microbiol. 125: 19–27.Google Scholar
  26. Pfennig, N. & H. G. Truper, 1974. The phototrophic bacteria. In R. E. Buchanan & N. E. Gibbons (eds), Bergey's Manual of Determinative Bacteriology, 8th edition. Williams & Wilkins, Baltimore: 24–64.Google Scholar
  27. Pedros-Alio, C., E. Montesinos & R. Guerrero, 1983. Factors determining annual changes in bacterial photosynthetic pigments in holomictic Lake Ciso, Spain. Appl. envir. Microbiol. 46: 999–1006.Google Scholar
  28. Postgate, J. R., 1979. The Sulphate Reducing Bacteria. Cambridge University Press, UK: 26–27.Google Scholar
  29. Sorokin, J. I. & N. Donato, 1975. On the carbon and sulphur metabolism in the meromictic Lake Faro (Sicily). Hydrobiologia 47: 241–252.Google Scholar
  30. Stanier, R. Y. & J. H. C. Smith, 1960. The chlorophylls of green bacteria. Biochem. Biophys. Acta 41: 478–484.Google Scholar
  31. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Fish. Res. Bd Can., Bulletin 167: 21–26.Google Scholar
  32. Takahashi, M. & S. Ichimura, 1970. Photosynthetic properties and growth of photosynthetic sulphur bacteria in lakes. Limnol. Oceanogr. 15: 929–944.Google Scholar
  33. Tominaga, H. & F. Fukui, 1981. Saline lakes at Syowa Oasis, Antarctica. Hydrobiologia 82: 375–389.Google Scholar
  34. Truper, H. G. & N. Pfennig, 1981. Characterization and identification of the anoxygenic phototrophic bacteria. In M. P. Starr, H. Stolp, H. G. Truper, A. Ballows & H. G. Schlegel (eds), The Prokaryotes, I. Springer-Verlag, Berlin: 299–312.Google Scholar
  35. van Gemerden, H., 1980. Survival of Chromatium vinosum at low light intensities. Arch. Microbiol. 125: 115–121.Google Scholar
  36. van Niel, C. B., 1971. Techniques for the enrichment, isolation and maintenance of photosynthetic bacteria. In A. San Pietro (ed.), Methods in Enzymology, 23 (A). Academic Press, New York: 3–28.Google Scholar
  37. Zobell, C. E., 1946. Studies on redox potential of marine sediments. Bull. am. Ass. pet. Geol. 30(4): 477–513.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • C. M. Burke
    • 1
  • H. R. Burton
    • 2
  1. 1.Department of ZoologyUniversity of Western AustraliaNedlandsAustralia
  2. 2.Department of ScienceAntarctic DivisionKingstonAustralia

Personalised recommendations