, Volume 105, Issue 1, pp 195–206 | Cite as

Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.)

  • James E. Cloern
  • Brian E. Cole
  • Ronald S. Oremland


Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4+, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4+, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.


saline lakes meromictic phytoplankton photosynthetic bacteria nutrient limitation nitrogen-fixation methane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axler, R. P., Gersberg, R. M. & Paulson, L. J., 1978. Primary productivity in meromictic Big Soda Lake, Nevada. Great Basin Nat. 38: 187–192.Google Scholar
  2. Bradley, W. H., 1931. Origin and microfossils of the Green River formation of Colorado and Utah. U.S.G.S. prof. Pap. 168, 58 pp.Google Scholar
  3. Breese, C. R., Jr., 1968. A general limnological study of Big Soda Lake. M.S. Thesis, Univ. Nevada, Reno, 83 pp.Google Scholar
  4. Brown, E., Skougstad, M. W. & Fishman, M. J., 1970. Methods for collection and analysis of water samples for dissolved minerals and gases. U.S. Geol. Surv. Tech. Wat. Resour. Inv. 5 A1, V pp.Google Scholar
  5. Capone, D. & Taylor, B. F., 1977. Nitrogen fixation (acetylene reduction) in the phyllosphere of Thalassia testudinum. Mar. Biol. 40: 19–28.Google Scholar
  6. Carpenter, J. H., 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10: 141–143.Google Scholar
  7. Cloern, J. E. & Cole, B. E., 1982. Autotrophic processes in meromictic Big Soda Lake, Nevada. EOS Trans. Am. Geophys. Un. 63: 965 (abstract).Google Scholar
  8. Cohen, Y., Krumbein, W. E. & Shilo, M., 1977. Solar Lake (Sinai). 2. Distribution of phytosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.Google Scholar
  9. Culver, D. A. & Brunskill, G. J., 1969. Fayetteville Green Lake, New York. 5. Studies of primary production and zooplankton in a meromictic lake. Limnol. Oceanogr. 14: 862–873.Google Scholar
  10. Czeczuga, B., 1968. An attempt to determine the primary production of the green sulfur bacteria, Chlorobium limnicola Nads. (Chlorobacteriaceae). Hydrobiologia 31: 317–333.Google Scholar
  11. Demaison, G. J. & Moore, G. T., 1980. Anoxic environments and oil source bed genesis. Am. Ass. Petrol. Geol. Bull. 64: 1179–1209.Google Scholar
  12. Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglington, G., 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 272: 212–216.Google Scholar
  13. Hardy, R. W. F., Holsten, R. D., Jackson, E. K. & Burns, R. C., 1968. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Pl. Physiol., Lancaster 43: 1158–1207.Google Scholar
  14. Kharaka, Y. K., Law, L. M., Carothers, W. W. & Robinson, S. W., 1981. Soda Lake, Nevada, 1: Hydrogeochemistry of an alkaline meromictic desert lake. EOS Trans. Am. Geophys. Un. 62: 922 (abstr.)Google Scholar
  15. Kimmel, B. L., Gersberg, R. M., Paulson, L. J., Axler R. P. & Goldman, C. R., 1978. Recent changes in the meromictic status of Big Soda Lake, Nevada. Limnol. Oceanogr. 23: 1021–1025.Google Scholar
  16. Lawrence, J. R., R. C. Haynes & U. T. Hammer, 1978. Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake. Verh. int. Ver. Limnol. 20: 201–207.Google Scholar
  17. Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.Google Scholar
  18. Northcote, T. G. & T. G. Halsey, 1969. Seasonal changes in the limnology of some meromictic lakes in southern British Columbia. J. Fish. Res. Bd. Can. 26: 1763–1787.Google Scholar
  19. Oremland, R. S., 1981. Microbial formation of ethane in anoxic estuarine sediments. Appl. envir. Microbiol. 42: 122–129.Google Scholar
  20. Oremland, R. S., Marsh, L. & Culbertson, C., 1981. Soda Lake 3: Dissolved gases and methanogenesis. EOS Trans. Am. Geophys. Un. 62: 922 (abstr.).Google Scholar
  21. Oremland, R. S., Marsh, L. & DesMarais, D. J., 1982. Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake. Appl. envir. Microbiol. 43: 462–468.Google Scholar
  22. Parker, R. D. & Hammer, U. T., in press. A study of Chromatiaceae in a saline meromictic lake in Saskatchewan, Canada. Int. Revue ges. Hydrobiol.Google Scholar
  23. Parkin, T. B. & Brock, T. D., 1980. Photosynthetic bacterial production in lakes: The effects of light intensity. Limnol. Oceanogr. 25: 711–718.Google Scholar
  24. Parkin, T. B. & Brock, T. D., 1981. Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Arch. Hydrobiol. 91: 366–382.Google Scholar
  25. Pfennig, N., 1975. The phototrophic bacteria and their role in the sulfur cycle. Pl. Soil 43: 1–16.Google Scholar
  26. Priscu, J. C., Axler, R. P., Carlton, R. G., Reuter, J. E., Arneson, P. A. & Goldman, C. R., 1982. Vertical profiles of primary productivity, biomass and physico-chemical properties in meromictic Big Soda Lake, Nevada-U.S.A. Hydrobiologia 96: 113–120.Google Scholar
  27. Rau, G. H., DesMarais, D. J. & Oremland, R. S., 1982. Stable isotope abundance in sedimentary inorganic, organic, and pigment carbon: applications to the paleoecology of BigSoda Lake, Nevada. EOS Trans. Am. Geophys. Un. 63: 957 (abstr.).Google Scholar
  28. Robinson, S. W. & Kharaka, Y. K., 1981. BigSoda Lake, Nevada, 2: Carbon isotopes. EOS Trans. Am. Geophys. Un. 62: 922 (abstr.)Google Scholar
  29. Rudd, J. W. H., Hamilton, R. D. & Campbell, N. E. R., 1974. Measurements of microbial oxidation of methane in lake water. Limnol. Oceanogr. 19: 519–524.Google Scholar
  30. Smith, J. W. & Robb, W. A., 1973. Aragonite and the genesis of carbonates in Mahogany zone oil shales of Colorado's Green River Formation. U.S. Bur. Mines Rep. 7727, 21 pp.Google Scholar
  31. Sorokin, J. I., 1970. Interrelations between sulfur and carbon turnover in meromictic lakes. Arch. Hydrobiol. 66: 391–446.Google Scholar
  32. Sorokin, J. I. & Donato, N., 1975. On the carbon and sulfur metabolism in the meromictic Lake Faro (Sicily). Hydrobiologia 47: 241–252.Google Scholar
  33. Stewart, W. D. P., Fitzgerald, N. G. P. & Burris, R. H., 1967. In situ studies on N2 fixation using the acetylene reduction technique. Proc. Natn. Acad. Sci. U.S.A. 58: 2071–2078.Google Scholar
  34. Takahashi, M. & Ichimura, S., 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol. Oceanogr. 13: 644–655.Google Scholar
  35. Takahashi, M. & Ichimura, S., 1970. Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol. Oceanogr. 15: 929–944.Google Scholar
  36. Takahashi, M., Yamaguchi, Y. & Ichimura, S., 1970. Dark fixation of CO2 in the lake with special reference to organic matter production. Bot. Mag., Tokyo 83: 397–410.Google Scholar
  37. Trüper, H. G. & Genovese, S., 1968. Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnol. Oceanogr. 13: 225–232.Google Scholar
  38. Walker, K. F., 1975. The seasonal phytoplankton cycles of two saline lakes in central Washington. Limnol. Oceanogr. 20: 40–53.Google Scholar
  39. Wetzel, R. G., 1975. Limnology. W. B. Saunders Co., Philad., 743 pp.Google Scholar
  40. Winfrey, M. R. & Zeikus, J. G., 1979. Microbial methanogenesis and acetate metabolism in a meromictic lake. Appl. envir. Microbiol. 37: 213–221.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • James E. Cloern
    • 1
  • Brian E. Cole
    • 1
  • Ronald S. Oremland
    • 1
  1. 1.U.S. Geological SurveyMenlo Park, CAU.S.A.

Personalised recommendations