, Volume 105, Issue 1, pp 95–113 | Cite as

The protozoa of a Western Australian hypersaline lagoon

  • F. J. Post
  • L. J. Borowitzka
  • M. A. Borowitzka
  • B. Mackay
  • T. Moulton


Hutt Lagoon, 28° 11′S, 114° 15′E, 600 km north of Perth, Western Australia and lying 5 m below sea level is the site of a pilot plant erected by Roche Algal Biotechnology for growing and harvesting the alga Dunaliella salina. The lagoon is filled to a depth of 50–75 cm by rainfall (18% w/v salinity or above) during the winter months and is desiccated to a 5 cm or more thick crust during the summer. Salt from the crust used to prepare a growth medium for D. salina introduced a number of protozoa to the cultures, some of which made great inroads on the algal population. Most of the protozoa in the crust are presumed to be in the form of cysts and originate from more or less permanent seeps and pools (>5% w/v salinity) resulting from the inflow of water from the Indian Ocean on the west and from continental ground water on the east. The salt of the crust is thus a mixture of athalassic and thalassic origin. Only the lower reaches of the seeps are inundated by the winter water rise.

Fourteen ciliates, 10 zooflagellates and 4 sarcodines were observed frequently enough in brines of over 15% (w/v) salinity to identify. At least one parasite of D. salina is included in the flagellate group. Although no concerted effort with the phytoflagellates was made, the rarely seen species D. peircei, D. jacobae and Ochromonas cosmopolitus were noted, as well as a Gymnodinium sp. The ciliates include the bacteriophagous Trachelocerca conifer, Metacystis truncata, Chilophrya utahensis, Rhopalophrya salina, Uronema marinum, Condylostoma sp. and Palmarella salina. Those eating both bacteria and algae were Nassula sp., Fabrea salina, Blepharisma halophila, Cladotricha sigmoidea, and Euplotes sp. Ciliates feeding on other ciliates include Podophrya sp. and Trematosoma bocqueti. Among the zooflagellates were several species of Monosiga, Rhynchomonas nasuta, Phyllomitus sp., Tetramitus salinus, T. cosmopolitus, Bodo caudatus, B. edax and 3 other distinctive Bodo species, one being parasitic on D. salina. All of the sarcodina fed on both algae and bacteria, except for the smallest amoeba (4 μm diameter rounded) which did not feed on algae, and included Heteramoeba sp. with both flagellate and amoeboid phases, an orange amoeba, an orange filopod-forming organism and a colorless filopod-forming organism, the last three of unknown genus.

The relationship of these protozoa to the lagoon and to D. salina culturing is discussed.


saline lakes hypersaline protozoa athalassic-thalassic Dunaliella 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakel, A. V., 1981. Geochemistry and hydrodynamics in the Hutt and Leeman evaporitic lagoons, Western Australia: A comparative study. Mar. Geol. 41: 1–35.Google Scholar
  2. Bauld, J., 1981. Occurrence of benthic microbial mats in saline lakes. Hydrobiologia 81: 87–111.Google Scholar
  3. Ben-Amotz, A. & Avron, M., 1981. Glycerol and beta carotene metabolism in the halotolerant alga Dunaliella: A model system for biosolar energy conversion. Trends Biochem. Sci. 6: 297–299.Google Scholar
  4. Brock, T. D., 1975. Salinity and the ecology of Dunaliella from Great Salt Lake. J. gen. Microbiol. 89: 285–292.Google Scholar
  5. Brock, T. D., 1979. Ecology of saline lakes. In: Shilo, M. (ed.), Strategies of Microbial Life in Extreme Environments. Dahlem Konferenzen, Berl.: 29–47.Google Scholar
  6. Brown, A. D. & Borowitzka, L. J., 1979. Halotolerance of Dunaliella. In: Levandowsky, M. & Hutner, S. H. (eds.), Biochemistry and Physiology of Protozoa, 1, 2nd ed. Academic Press, N.Y.: 139–190.Google Scholar
  7. Corliss, C. R., 1979. The Ciliated Protozoa, 2nd ed. Pergamon Press, N.Y., 455 pp.Google Scholar
  8. Curds, C. R., 1975. A guide to the species of genus Euplotes (Hypotrichida, Ciliatea). Bull. Br. Mus. (Nat. Hist.) Zool. 28: 1–61.Google Scholar
  9. Dogiel, V. A., 1965. General Protozoology, 2nd ed. Oxford University Press, 747 pp.Google Scholar
  10. Droop, M. R., 1962. Heteramoeba clara n. gen., n. sp., a sexual biphasic amoeba. Arch. Microbiol. 42: 254–266.Google Scholar
  11. Felix, E. A. & Rushforth, S. R., 1979. The algal flora of the Great Salt Lake, Utah, U.S.A. Nova Hedwigia 31: 163–195.Google Scholar
  12. Flowers, S. & Evans, F. K., 1966. The flora and fauna of the Great Salt Lake Region, Utah. In: Boyko, H. (ed.), Salinity and Aridity. New Approaches to Old Problems. Dr. W. Junk, The Hague, Neth.: 367–393.Google Scholar
  13. Fulton, C., 1970. Amebo-flagellates as research partners; the laboratory biology of Naegleria and Tetramitus. In Prescott, D. M. (ed.), Methods in Cell Physiology, 4. Academic Press, N.Y.: 341–476.Google Scholar
  14. Gaievskaia (Gaiewskaia or Gajewskaja), N., 1925. Sur deux nouveaux infusoires des mares salées — Cladotricha koltzowii nov. gen., nov. sp. et Palarium salinum nov. gen., nov. sp. Arch. Russ. Protistol. 4: 255–288 (in French with Russian summary).Google Scholar
  15. Golubic, S., 1980. Halophily and halotolerance in cyanophytes. Origins Life 10: 169–183.Google Scholar
  16. Greer, D. C., 1977. Desertic terminal lakes. In Greer, D. C. (ed.), Desertic Terminal Lakes. Utah Water Research Laboratory, Utah State University, Logan: 1–24.Google Scholar
  17. Guilcher, Y., 1950. Sur quelques Acinétiens nouveaux ectoparasites de Copépodes Harpacticides. Arch. Zool. exp. gén. 87: 24–30.Google Scholar
  18. Hamburger, C., 1905. Zur Kenntnis der Dunaliella salina und einer Amoebe aus Salinenwasser von Cagliari. Arch. Protistenk. 6: 111–130.Google Scholar
  19. Hollande, A., 1938. Bodo perforans n. sp. flagellé nouveau parasite externe du Chilomonas paramecium Ehreb. Arch. Zool. exp. gén. 79: 75–81.Google Scholar
  20. Honigberg, B. M., Balamuth, W., Bovee, E. D., Corliss, J. D., Gojkics, M., Hall, R. P., Kudo, R. R., Levine, N. D., Loeblich, A. R., Jr., Weiser, J. & Wenrich, D. H., 1964. A revised classification of the phylum Protozoa. J. Protozool. 11: 7–20.Google Scholar
  21. Jahn, T. L., Bovee, E. C. & Jahn, F. F., 1979. How to Know the Protozoa, 2nd ed. Wm. C. Brown Co., Dubuque, Ia., 279 pp.Google Scholar
  22. Johnson, M. K., Johnson, E. J., MacElroy, R. D., Speer, H. L. & Bruff, B. S., 1968. Effects of salts on the halophilic alga Dunaliella viridis. J. Bacteriol. 95: 1461–1468.Google Scholar
  23. Kahl, A., 1928. Die Infusorien (Ciliata) der Oldesloer Salzwasserstellen. Arch. Hydrobiol. 19: 189–246.Google Scholar
  24. Kaufmann, D. W., 1960. Physical properties of sodium chloride in crystal gas and aqueous solution states. In: Kaufmann, H. W. (ed.), Salt. ACS Monograph Ser. 145. Reinhold, N.Y.: 587–626.Google Scholar
  25. Kudo, R. R., 1966. Protozoology, 5th ed., Charles C. Thomas, Springfield, Ill, 1174 pp.Google Scholar
  26. Larsen, H., 1980. Ecology of hypersaline environments. In: Nissenbaum, A. (ed.), Hypersaline Brines and Evaporitic Environments. Dev. Sediment. 28, Elsevier, Amst.: 23–39.Google Scholar
  27. Lerche, W., 1938. Untersuchungen über Entwicklung und Fortplanzung in der Gattung Dunaliella. Arch. Protistenk. 88: 236–268.Google Scholar
  28. Liebetanz, B., 1925. Hydrobiologische Studien an Kujawischen Brackwässern. Bull. int. Acad. Pol. Sci. Lett., Cracow. Cl. Sci. Math. Nat. Ser. B, Sci. Nat. 1925: 1–116.Google Scholar
  29. Loeblich, L. A., 1972. Studies on the brine flagellate Dunaliella salina. Ph.D. Diss., Univ. Calif., San Diego, 142 pp.Google Scholar
  30. Masyuk, N. P., 1973. Morphology, Systematics, Ecology, Geographical Distribution of the Genus Dunaliella (Teod.). Ukraine Acad. Sci. Kiev, 244 pp. (in Russian).Google Scholar
  31. Nixon, S., 1970. Characteristics of some hypersaline ecosystems. Ph.D. Diss., Univ. N. Carolina, Chapel Hill, 413 pp.Google Scholar
  32. Oren, A. & Shilo, M., 1982. Population dynamics of Dunaliella parva in the Dead Sea. Limnol. Oceanogr. 21: 201–211.Google Scholar
  33. Pack, D. A., 1919. Two ciliata of Great Salt Lake. Biol. Bull. 36: 273–282.Google Scholar
  34. Page, F. C., 1976. An Illustrated Key to Freshwater and Soil Amoebae. Freshwat. biol. Ass., Ambleside, Cumbria, Engl., 155 pp.Google Scholar
  35. Post, F. J., 1977. The microbial ecology of the Great Salt Lake. Microb. Ecol. 3: 143–165.Google Scholar
  36. Post, F. J., 1981. Microbiology of the Great Salt Lake north arm. Hydrobiologia 81: 59–69.Google Scholar
  37. Reddy, Y. J. R., 1972. A description of morphology of a new species of Euplotes from Great Salt Lake, Utah. M.Sc. Thesis, Univ. Utah, Salt Lake City, 31 pp.Google Scholar
  38. Ruinen, J., 1938a. Notizen über Ciliaten aus konzentrierten Salzgewässern. Zoöl. Meded. Leiden 20: 243–256.Google Scholar
  39. Ruinen, J., 1938b. Notizen über Salzflagellaten. 2. Über die Verbreitung der Salzflagellaten. Arch. Protistenk. 90: 210–258.Google Scholar
  40. Ruinen, J. & Baas Becking, L. G. M., 1938. Rhizopods living in unusual environments. Arch. Neerland. Zool. 3: 181–198.Google Scholar
  41. Schuster, F. L., 1979. Small amebas and ameboflagellates. In: Levandowsky, M. & Hutner, S. H. (eds.), Biochemistry and Physiology of Protozoa, 1, 2nd ed. Academic Press, N.Y.: 216–285.Google Scholar
  42. Spero, H. J. & Moreé, M. D., 1981. Phagotrophic feeding and its importance to the life cycle of the holozoic dinoflagellate, Gymnodinium fungiforme. J. Phycol. 17: 43–51.Google Scholar
  43. Vickerman, K., 1976. The diversity of the kinetoplastid flagellates In: Lumsden, W. H. R. & Evans, D. A. (eds.), Biology of the Kinetoplastida. 1. Academic Press, N.Y.: 1–34.Google Scholar
  44. Volcani, B. E., 1943. A dimastigamoeba in the bed of the Dead Sea. Nature 152: 301–302.Google Scholar
  45. Volcani, B. E., 1944. A ciliate from the Dead Sea. Nature 154: 335.Google Scholar
  46. Wilbert, N. & Kahan, D., 1981. Ciliates of Solar Lake on the Red Sea. Arch. Protistenk. 124: 70–95.Google Scholar
  47. Williams, W. D., 1981. Salt Lakes. Dev. Hydrobiol. 5, 444 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • F. J. Post
    • 1
  • L. J. Borowitzka
    • 1
  • M. A. Borowitzka
    • 1
  • B. Mackay
    • 1
  • T. Moulton
    • 1
  1. 1.Roche Algal BiotechnologyDee WhyAustralia

Personalised recommendations