Hydrobiologia

, Volume 105, Issue 1, pp 27–43 | Cite as

Seasonal variation of nutrients, organic carbon, ATP, and microbial standing crops in a vertical profile of Pyramid Lake, Nevada

  • K. Hamilton-Galat
  • D. L. Galat
Article

Abstract

Previous studies of Pyramid Lake, Nevada, led to the hypothesis that detritus could be an important food source for zooplankton because abundance of palatable algal species did not seem to be enough to support the zooplankton community throughout the year. Furthermore, a large portion of the annual primary productivity was attributed to a nonpalatable blue-green alga, Nodularia spumigena. We felt this alga became important to the Pyramid Lake aquatic community upon death, as edible detritus and a source of new nitrogen. Changes in pelagic detritus concentrations and microbial standing crops were monitored to determine the availability of these potential foods. Epilimnetic particulate organic carbon (POC) was primarily living phytoplankton. During holomixis and following spring primary production, hypolimnetic POC was 60–97% detrital, but these profundal POC concentrations were low (ca 650 µg l-1). Detritus-bacteria aggregates were observed only following the September cyanophyte bloom.

Although pelagic detritus availability for zooplankton was low, bacterial populations were sufficient to be at least a supplemental food source. Bacteria numbers ranged from 0.50 106 to 24.7 106 ml-1 and increased in response to photosynthetic peaks. Microbial diversity, contribution to POC, and particle association were notable after July. The percentage of living carbon (assessed with ATP measurements) attributable to bacteria was highest in late summer and fall hypolimnetic samples.

Patterns of change in organic phosphorus and nitrogen, the presence of a nitrogen-fixing cyanophyte, the N:P ratio, and results of other research demonstrated that non-nitrogen-fixing algae of Pyramid Lake are limited by inorganic nitrogen. The importance of N. spumigena to the aquatic community appeared to be as a source of new nitrogen, rather than as a forage; its mineralization is critical for the growth of palatable diatoms and green algae following winter mixing.

Keywords

saline lakes ATP bacteria nutrients carbon Pyramid Lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, H. L., 1973. Dissolved organic carbon: Patterns of utilization and turnover in two small lakes. Int. Revue ges. Hydrobiol. 58: 617–624.Google Scholar
  2. Axler, R. P., Redfield, G. W. & Goldman, C. R., 1981. The importance of regenerated nitrogen to phytoplankton productivity in a subalpine lake. Ecology 62: 345–354.Google Scholar
  3. Bell, W. H. & Sakshaug, E., 1980. Bacterial utilization of algal extracellular products. 2. A kinetic study of natural populations. Limnol. Oceanogr. 2: 1021–1033.Google Scholar
  4. Berg, C. P., Schneider, S. R. & Galat, D. L., 1981. Calcium carbonate precipitation in Pyramid Lake, Nevada, as monitored by satellite: 1978 and 1980. Proc. 15th int. Symp. Rem. Sens. Environ. 15: 721–731.Google Scholar
  5. Bloesch, J., Stadelmann, P. & Bührer, H., 1977. Primary production, mineralization, and sedimentation in the euphotic zone of two Swiss lakes. Limnol. Oceanogr. 22: 511–526.Google Scholar
  6. Bowden, W. B., 1977. Comparison of two direct-count techniques for enumerating aquatic bacteria. Appl. envir. Microbiol. 33: 1229–1232.Google Scholar
  7. Brezonik, P. L., Browne, F. X. & Fox, J. L., 1975. Applications of ATP to plankton biomass and bioassay studies. Water Res. 9: 155–162.Google Scholar
  8. Cavari, B., 1976. ATP in Lake Kinneret — indicator of microbial biomass or of phosphate deficiency. Limnol. Oceanogr. 21: 231–236.Google Scholar
  9. Claesson, A. & Forsberg, A., 1980. Algal assays of waste water polluted lakes. Arch. Hydrobiol. 89: 208–224.Google Scholar
  10. Coveney, M. F., 1982. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos 38: 8–20.Google Scholar
  11. Crawford, C. C., Hobbie, J. E. & Web, K. L., 1974. The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–563.Google Scholar
  12. Dale, N. G., 1974. Bacteria in intertidal sediments: Factors related to their distribution. Limnol. Oceanogr. 19: 509–518.Google Scholar
  13. Daumas, R. & Fiala, M., 1969. Evaluation de la matière organique vivante dans les eaux marines par la mesure de l'adenosine triphosphate. Mar. Biol. 3: 243–246.Google Scholar
  14. DeMott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol. Oceanogr. 27: 518–527.Google Scholar
  15. Drabkova, V. G., Letankaya, G. I. & Makartseva, E. S., 1978. Features of the structure and trophic links of planktonic associations in two lakes with different degrees of salinity. Sov. J. Ecol. 9: 68–73.Google Scholar
  16. Edmondson, W. T., 1957. Trophic relations of the zooplankton. Trans. am. microsc. Soc. 76: 225–245.Google Scholar
  17. Fenchel, T., 1970. Studies on the decomposition of organic detritus from the turtle grass Thalassia testudinum. Limnol. Oceanogr. 15: 14–20.Google Scholar
  18. Fenchel, T. & Jorgensen, B. B., 1977. Detritus food chains of aquatic ecosystems: The role of bacteria. In M. Alexander (ed.), Advances in Microbial Ecology. Plenum Press, N.Y.: 1–58.Google Scholar
  19. Ferguson, R. L. & Palumbo, A. V., 1979. Distribution of suspended bacteria in neritic waters south of Long Island during stratified conditions. Limnol. Oceanogr. 24: 697–705.Google Scholar
  20. Ferguson, R. L. & Rublee, P., 1976. Contributions of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21: 141–144.Google Scholar
  21. Galat, D. L., 1982. Primary production as a predictor of potential fish production: application to Pyramid Lake, Nevada. Ph. D. Diss., Colorado St. Univ., Ft. Collins, CO., 157 pp.Google Scholar
  22. Galat, D. L., Lider, E. L., Vigg, S. & Robertson, S. R. 1981. Limnology of a large, deep North American terminal lake, Pyramid Lake, Nevada, U.S.A. Hydrobiologia 82: 281–317.Google Scholar
  23. Ganf, G. G. & Blazka, P., 1974. Oxygen uptake, ammonia, and phosphate excretion by zooplankton of a shallow equatorial lake (Lake George, Uganda). Limnol. Oceanogr. 19: 313–325.Google Scholar
  24. Geller, W. & Muller, H., 1981. The filtration apparatus of Cladocera; filter mesh sizes and their implications on food selectivity. Oecologia 49: 316–321.Google Scholar
  25. Gerritsen, J. & Porter, K. G., 1982. The role of surface chemistry in filter feeding by zooplankton. Science 216: 1225–1227.Google Scholar
  26. Gilbert, J. J. & Starkweather, P. L., 1977. Feeding in the rotifer Brachionus calyciflorus. 1. Regulatory mechanisms. Oecologia 28: 125–131.Google Scholar
  27. Gilbert, J. J. & Starkweather, P. L., 1978. Feeding in the rotifer Brachionus calyciflorus. 3. Direct observations on the effects of food type food density, change in food type, and starvation on the incidence of pseudotrochal screening. Verh. int. Ver. Limnol. 20: 2382–2388.Google Scholar
  28. Godlewska-Lipowa, W. A., 1979. O2 consumption as an indicator of heterotrophic activity of bacteria in lakes of different trophic conditions. Ergebn. Limnol. 12: 11–23.Google Scholar
  29. Gophen, M., Cavari, B. Z. & Berman, T., 1974. Zooplankton feeding on differentially labeled algae and bacteria. Nature 247: 393–394.Google Scholar
  30. Hall, G. H., 1982. Apparent and measured rates of nitrification in the hypolimnion of a mesotrophic lake. Appl. envir. Microbiol. 43: 542–547.Google Scholar
  31. Hammer, U. T., 1981. Primary production in saline lakes. A review. Hydrobiologia 81: 47–57.Google Scholar
  32. Heald, E. J., 1969. The production of organic detritus in a south Florida estuary. Ph.D. Diss., Univ. Miami, Fl, USA, 110 pp.Google Scholar
  33. Healey, F. P. & Hendzel, C. C., 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fish. aquat. Sci. 37: 442–453.Google Scholar
  34. Hobbie, J. E., Daley, R. J. & Jasper, S., 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.Google Scholar
  35. Hobbie, J. E., Holm-Hansen, O., Packard, T. T., Pomeroy, L. R., Sheldon, R. W., Thomas, J. P. & Wiebe, W. S., 1972. Distribution and activity of microorganisms in ocean water. Limnol. Oceanogr. 17: 544–555.Google Scholar
  36. Holm-Hansen, O., 1969. Determination of microbial biomass in ocean profiles. Limnol. Oceanogr. 14: 740–747.Google Scholar
  37. Holm-Hansen, O., 1970. ATP levels in algal cells as influenced by environmental conditions. Pl. Cell Physiol. 11: 689–700.Google Scholar
  38. Holm-Hansen, O., 1972. The distribution and chemical composition of particulate material in marine and fish waters. Mem. Ist. ital. Idrobiol. Suppl. 29: 37–51.Google Scholar
  39. Holm-Hansen, O. & Booth, C. R., 1966. The measurement of ATP in the ocean and its ecological significance. Limnol. Oceanogr. 11: 510–519.Google Scholar
  40. Holm-Hansen, O. & Paerl, H. W., 1972. The applicability of ATP determination for estimation of microbial biomass and metabolic activity. Mem. Ist. ital. Idrobiol. Suppl. 29: 149–168.Google Scholar
  41. Horne, A. J., 1978. Nitrogen fixation in eutrophic lakes. Wat. Pollut. Microbiol. 2: 1–30.Google Scholar
  42. Horne, A. J. & Goldman, C. R., 1972. Nitrogen fixation in Clear Lake, California. 1. Seasonal variation and the role of heterocysts. Limnol. Oceanogr. 17: 678–692.Google Scholar
  43. Horne, A. J. & Viner, A. B., 1971. Nitrogen fixation and its significance in tropical Lake George, Uganda. Nature 232: 417–418.Google Scholar
  44. Jones, J. G., 1978. The distribution of some freshwater planktonic bacteria in two stratified eutrophic lakes. Freshwat. Biol. 8: 127–140.Google Scholar
  45. Jordan, M. J. & Likens, G. E., 1980. Measurement of planktonic bacterial production in an oligotrophic lake. Limnol. Oceanogr. 25: 719–732.Google Scholar
  46. Kilham, P., 1981. Pelagic bacteria: extreme abundances in African saline lakes. Naturwissenschaften 67: 380–381.Google Scholar
  47. Koch, D., Hoffman, C. & Mahoney, J., 1976. Pyramid Lake: Zooplankton distribution and blooms of the blue-green alga, Nodularia spumigena. Wat. Resour. Center, Proj. Rep. 38, Desert Res. Inst., Reno, Nevada, USA, 46 pp.Google Scholar
  48. Larsson, K., Weibull, C. & Cronberg, G., 1978. Comparison of light and electron microscope determinations of the number of bacteria and algae in lake water. Appl. envir. Microbiol. 35: 397–404.Google Scholar
  49. Lehman, J. T., 1980. Nutrient recycling as an interface between algae and grazers in freshwater communities. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire: 251–263.Google Scholar
  50. Lider, E. L., Bailey, C. J. & Koch, D. L., 1980. Algal growth potentials in the Truckee River, Lahontan Reservoir and Pyramid Lake, Nevada. Bioresour. Center Publ. 50017, Desert Res. Inst., Reno, Nevada, USA, 48 pp.Google Scholar
  51. Mackinnon, M. L., Chassaing, B. & Olive, P., 1978. First data on ATP in Lake Leman. Verh. int. Ver. Limnol. 20: 914–920.Google Scholar
  52. Mann, K. H., 1972. Macrophyte production and detritus food chains in coastal waters. Mem. Ist. ital. Idrobiol. Suppl. 29: 353–383.Google Scholar
  53. Mayzaud, P. & Taguchi, S., 1979. Spectral and biochemical characteristics of the particulate matter in Bedford Basin. J. Fish. Res. Bd Can. 36: 211–218.Google Scholar
  54. Meffert, M.-E. & Overbeck, J., 1981. Interactions between Oscillatoria redekei (Cyanophyta) and bacteria. Verh. int. Ver. Limnol. 21: 1432–1435.Google Scholar
  55. Melack, J. M., Kilham, P. & Fisher, T. R., 1982. Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia 52: 321–326.Google Scholar
  56. Morgan, K. C. & Kalff, J., 1972. Bacterial dynamics in two high arctic lakes. Freshwat. Biol. 2: 217–228.Google Scholar
  57. Nalewajko, C., Dunstall, T. G. & Shear, H., 1976. Kinetics of extracellular release in axenic algae and in mixed algal-bacterial cultures: Significance in estimation of total(gross) and phytoplankton excretion rates. J. Phycol. 12: 1–5.Google Scholar
  58. Nalewajko, C. & Lean, D. R., 1972. Growth and excretion in phytoplanktonic algae and bacteria. J. Phycol. 8: 361–366.Google Scholar
  59. Nalewajko, C., Lee, K. & Fay, P., 1980. Significance of algal extracellular products to bacteria in lakes and in cultures. Microb. Ecol. 6: 199–207.Google Scholar
  60. Nordin, R. N., 1974. The biology of Nodularia (Cyanophyceae). Ph.D. Diss., Univ. Br. Columbia, Victoria, 165 pp.Google Scholar
  61. Odum, E. P. & de la Cruz, A. A., 1967. Particulate organic detritus in a Georgia salt marsh-estuarine ecosystem. In Lauff G. H.(ed.), Estuaries. Am. Ass. Adv. Sci. Publ. 83, Wash. D.C.: 383–388.Google Scholar
  62. Overbeck, J., 1972. Distribution patterns of phytoplankton and bacteria, microbial decomposition of organic matter and bacterial production in eutrophic stratified lakes. In Kajcek, Z. & Hillbricht-Ilkowska, A. (eds.), Productivity problems of freshwaters. PWN Publishers, Warsaw: 227–237.Google Scholar
  63. Paerl, H. W., 1974. Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater systems. Limnol. Oceanogr. 19: 966–972.Google Scholar
  64. Paerl, H. W., Richards, R. C., Leonard, R.L. & Goldman, C. R., 1975. Seasonal nitrate cycling as evidence for complete vertical mixing in Lake Tahoe, California-Nevada.Limnol. Oceanogr. 20: 1–8.Google Scholar
  65. Paerl, H. W., Thomson, R. D. & Goldman, C. R., 1975. The ecological significance of detritus formation during a diatom bloom in Lake Tahoe, California-Nevada. Verh. int. Ver. Limnol. 19: 826–834.Google Scholar
  66. Paerl, H. W. & Williams, N. J., 1976. The relation between adenosine triphosphate and microbial biomass in diverse aquatic ecosystems. Int. Revue ges. Hydrobiol. 61: 659–664.Google Scholar
  67. Peters, R. H. & MacIntyre, S., 1976. Orthophosphate turnover in East African lakes. Oecologia 25: 313–319.Google Scholar
  68. Peterson, B. J., Hobbie, J. E. & Haney, J. F., 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1044.Google Scholar
  69. Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.Google Scholar
  70. Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–170.Google Scholar
  71. Porter, K. G. & Orcutt Jr., J. D., 1980. Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire: 268–281.Google Scholar
  72. Robinson, C. H., 1975. ATP measurements and the assessment of the trophic status of four New Mexico reservoirs. In A. Boren (ed.), ATP methodology seminar. SAI Co., San Diego, Calif.: 450–522.Google Scholar
  73. Rudd, J. W. M. & Hamilton, R. D., 1973. Measurement of adenosine triphosphate (ATP) in two Precambian Shield lakes of northwestern Ontario. J. Fish. Res. Bd Can. 30: 1537–1546.Google Scholar
  74. Salonen, K., 1981. The ecosystem of the oligotrophic Lake Pääjärvi. 2. Bacterioplankton. Verh. int. Ver. Limnol. 21: 448–453.Google Scholar
  75. Sharp, J. H., 1974. Improved analysis for "particulate" organic carbon and nitrogen from seawater. Limnol. Oceanogr. 19: 984–989.Google Scholar
  76. Sinclair, M., Keighan, E. & Jones, J., 1979. ATP as a measure of living phytoplankton carbon in estuaries. J. Fish. Res. Bd Can. 36: 180–186.Google Scholar
  77. Sorokin, Y. I. & Kadota, H., 1972. Techniques for the assessment of microbial production and decomposition in fresh waters. IBP handbook 23. Blackwell Scientific Publications, Oxford, Engl., 112,pp.Google Scholar
  78. Spencer, M. J., 1978. Microbial activity and biomass relationships in 26 oligotrophic to mesotrophic lakes in South Island, New Zealand. Verh. int. Ver. Limnol. 20: 1175–1181.Google Scholar
  79. Stainton, N. P., 1980. Errors in molybdenum blue methods for determining orthophosphate in freshwater. Can. J. Fish. aquat. Sci. 37: 472–478.Google Scholar
  80. Starkweather, P. L., 1980. Behavioral determinants of diet quantity and diet quality in Brachionus calyciflorus. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire: 151–157.Google Scholar
  81. Stevenson, L. H., 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4: 127–133.Google Scholar
  82. Strickland, J. D. H. & Parsons, T. R., 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can. 167, 310 pp.Google Scholar
  83. Tabor, P. S., Ohwada, K. & Colwell, R. R., 1982. Filterable marine bacteria found in the deep sea: Distribution, taxonomy and response to starvation. Microb. Ecol. 7: 67–83.Google Scholar
  84. Teal, J. M., 1962. energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624.Google Scholar
  85. Tezuka, Y., 1971. Feeding of Daphnia on planktonic bacteria. Jap. J. Ecol. 21: 127–134.Google Scholar
  86. Tilzer, M., 1972. Bacterial productivity of a high mountain lake. Verh. int. Ver. Limnol. 18: 188–196.Google Scholar
  87. U.S.E.P.A., 1979. Methods for chemical analysis of water and wastes. United States Environmental Protection Agency, envir. Monitoring Support Lab., Cincinnati, Ohio, 460 pp.Google Scholar
  88. Vincent, W. F. & Downes, M. T., 1981. Nitrate accumulation in aerobic hypolimnia: Relative importance of benthic and planktonic nitrifiers in an oligotrophic lake. Appl. envir. Microbiol. 42: 565–573.Google Scholar
  89. Watson, S. W. & Hobbie, J. E., 1979. Measurement of bacterial biomass as lipopolysaccharide. In Costerton, J. W. & Colwell, R. R. (eds.), Native Aquatic Bacteria: Enumeration, Activity, and Ecology. ASTM spec. tech. Publ. 695. Am. Soc. Test. Mater., Philad., Penn.: 82–88.Google Scholar
  90. Watson, S. W., Novitsky, T. J., Quinby, H. L. & Valois, F. W., 1977. Determination of bacterial number and biomass in the marine environment. Appl. envir. Microbiol. 33: 940–946.Google Scholar
  91. Webster, K. E. & Peters, R. H., 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1244.Google Scholar
  92. Zimmermann, R., Iturriaga, R. & Becker-Birck, J., 1978. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. envir. Microbiol. 36: 926–935.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • K. Hamilton-Galat
    • 1
  • D. L. Galat
    • 1
  1. 1.Colorado Cooperative Fishery Research UnitColorado State UniversityFort CollinsU.S.A.

Personalised recommendations