Plant and Soil

, Volume 155, Issue 1, pp 269–272 | Cite as

Why are hairy root clusters so abundant in the most nutrient-impoverished soils of Australia?

  • Byron B. Lamont


Rootlets, covered in long root hairs, are aggregated into distinct clusters in many groups of Australian plants. They are almost universal in the family Proteaceae, and some members of the Papilionaceae, Mimosaceae, Casuarinaceae, Cyperaceae, Restionaceae and Dasypogonaceae. These families have their centres of distribution in the oldest, most leached sands and laterites of the continent. Root clusters are almost confined to the uppermost 100 mm of the soil profile, often penetrating into the raw litter. These horizons are the major sources of mineral nutrients which are mobilized when these soils become moist. I argue that root clusters are an ideal solution for maximizing nutrient uptake in extremely impoverished soils, especially in seasonal climates.

Key words

proteoid roots organic matter nodules mycorrhizas phosphorus uptake root hairs Proteaceae seasonal climates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baylis GT 1972 Search 3, 257–259.Google Scholar
  2. Campbell EO 1964 Trans. Roy. Soc. New Zeal., Bot. 2, 219–227.Google Scholar
  3. Davies J, Briarty LG and Rieley JO 1973 New Phytol. 72, 167–174.Google Scholar
  4. Dell B, Kuo J and Thomson GJ 1980 Aust. J. Bot. 28, 27–37.Google Scholar
  5. Gardner WK, Barber DA and Parbery DG 1982 Aust. J. Bot. 30, 303–309.Google Scholar
  6. Froend RH 1987 Investigations into species richness patterns in the northern sandplain region of Western Australia. Thesis, Univ. West. Aust., Perth.Google Scholar
  7. Gardner WK, Parbery DG and Barber DA 1982 Plant Soil 68, 19–32.Google Scholar
  8. Gardner WK, Parbery DG and Barber DA 1983 Plant Soil 70, 107–124.Google Scholar
  9. Grinbergs JM, Valezuela EF and Ramirez CG 1987 Agro Sur 15, 1–9.Google Scholar
  10. Gullan PK 1975 Vegetation at Ganbourne Vol. 2. Thesis, Monash Univ., Vic.Google Scholar
  11. Handreck KA 1991 Aust. J. Bot. 39, 373–384.Google Scholar
  12. Jeffrey DW 1967 Aust. J. Bot. 15, 403–411.Google Scholar
  13. Lamont B 1972a Aust. J. Bot. 20, 155–174.Google Scholar
  14. Lamont B 1972b Aust. J. Bot. 20, 383–384.Google Scholar
  15. Lamont B 1973 Aust. J. Bot. 21, 165–187.Google Scholar
  16. Lamont B 1974 New Phytol. 73, 985–996.Google Scholar
  17. Lamont B 1981 In Heathlands and Related Shrublands of the World. B Analytical Studies. Ed RL Specht. pp 183–195. Elsevier, Amsterdam.Google Scholar
  18. Lamont B 1981a Aust. J. Bot. 29, 81–96.Google Scholar
  19. Lamont B 1981b Physiol. Plant. 52, 181–186.Google Scholar
  20. Lamont B 1982 Bot. Rev. 48, 597–689.Google Scholar
  21. Lamont B 1983a J. S. Afr. Bot. 49, 103–123.Google Scholar
  22. Lamont B 1983b Plant Soil 74, 149–152.Google Scholar
  23. Lamont BB 1984 In Kwongan: Plant Life of the Sandplain. Eds JS Pate and JS Beard. pp 126–145 Univ. West. Aust. Press, Perth.Google Scholar
  24. Lamont BB, Hopkins AJM and Hnatiuk RJ 1984 In Kwongan: Plant Life of the Sandplain. Eds JS Pate and JS Beard. pp 27–50 Univ. West. Aust. Press, Perth.Google Scholar
  25. Lamont BB 1986 Acta Hort. 185, 163–170.Google Scholar
  26. Lamont BB 1993 In Mediterranean-type Ecosystems of the Pacific Basin: Similarities and Differences. Springer-Verlag, NY (in press)Google Scholar
  27. Lamont BB and McComb AJ 1974 Aust. J. Bot. 22, 681–688.Google Scholar
  28. Lamont BB, Brown G and Mitchell DT 1984 New Phytol. 97, 381–390.Google Scholar
  29. Lindsay AM 1985 Proc. Ecol. Soc. Aust. 14, 83–97.Google Scholar
  30. Louis I, Racette S and Torrey JG 1990 New Phytol. 115, 311–317.Google Scholar
  31. Low AB and Lamont BB 1990 Aust. J. Bot. 38, 351–359.Google Scholar
  32. Malajczuk N and Bowen GD 1974 Nature 251, 316–317.Google Scholar
  33. Pathmaranee N 1974 Observations on proteoid roots. Thesis, Univ. Sydney, N.S.W.Google Scholar
  34. Phillips D and Weste G 1984 Aust. J. Bot. 32, 339–352.Google Scholar
  35. Purnell HM 1960 Aust. J. Bot. 8, 38–50.Google Scholar
  36. Reddell P 1986 Soil and plant factors affecting nodulation and nitrogen-fixation in Casuarinaceae-Frankia symbiosis. Thesis, Univ. West. Aust., Perth.Google Scholar
  37. Reid CP and Bowen GD 1979 In The Soil-Root Interface. Eds JL Harley and RS Russell. pp 211–219. Academic Press, London.Google Scholar
  38. Sward RJ 1978 Studies on VA mycorrhizas of some Australian heathland plants. Thesis, Monash Univ., Vic.Google Scholar
  39. Williams CH and Raupach M 1983 In Soils: An Australian Viewpoint. pp 777–794. Academic Press, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Byron B. Lamont
    • 1
  1. 1.School of Environmental BiologyCurtin UniversityPerth

Personalised recommendations