Advertisement

Hydrobiologia

, Volume 170, Issue 1, pp 267–284 | Cite as

The influence of animals on phosphorus cycling in lake ecosystems

  • Gunnar Andersson
  • Wilhelm Granéli
  • Jan Stenson
Article

Abstract

Aquatic animals directly influence the cycling of phosphorus in lakes through feeding and excretion. Traditionally, animals (zooplankton, benthic invertebrates and fish) have been assigned only minor roles in the process of freshwater phosphorus cycling. They were regarded as consumers without much regulating influence. Today there is growing evidence that animals, predators and herbivores, directly or indirectly can control biomass of primary producers and internal cycling of phosphorus.

This paper summarizes different mechanisms of transformation and translocation of phosphorus via different groups of organisms.

Keywords

Biomass Phosphorus Minor Role Aquatic Animal Benthic Invertebrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, D. J., 1976. Life history patterns in zooplankton. Am. Nat. 110: 165–180.Google Scholar
  2. Aller, R. C., 1978. Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry. Am. J. Sci. 278: 1185–1234.Google Scholar
  3. Aller, R. C., 1980. Relationships of tube-dwelling benthos with sediment and overlying water chemistry. In K. R. Tenore & B. C. Coull (eds.), Marine benthic dynamics. Univ. South Carolina Press: 285–308.Google Scholar
  4. Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In P. L. mcCall & M. J. S. Tevesz (eds.), Animal-sediment relations: The biogenic alteration of sediments. Plenum Press, NY: 53–102.Google Scholar
  5. Alsterberg, G., 1924. Die Nahrungszirkulation einiger Binnenseetypen. Arch. Hydrobiol. 15: 291–338.Google Scholar
  6. Andersen, J. M., 1975. Influence of pH on the release of phosphorus from lake sediments. Arch. Hydrobiol. 76: 411–419.Google Scholar
  7. Andersen, J. M., 1977. Importance of the denitrification process for the rate of degradation of organic matter in lake sediments. In H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr. W. Junk, The Hague: 357–362.Google Scholar
  8. Andersson, G., 1984. The role of fish in lake ecosystems and in limnology. In S. Bosheim & M. Nicholls (eds.), Interaktioner mellom trofiske nivåer i ferskvann. Norsk Limnologförening. Oslo: 189–197.Google Scholar
  9. Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.Google Scholar
  10. Barlow, J. P. & L. W. Bishop, 1965. Phosphate regeneration by zooplankton in Cayuga lake. Limnol. Oceanogr. 10 (suppl.): 15–24.Google Scholar
  11. Bartell, S. M. & J. F. Kitchell, 1978. Seasonal impact of planktivory on phosphorus release by Lake Wingra zooplankton. Verh. int. Verein. Limnol. 20: 466–475.Google Scholar
  12. Berman, M. & S. Richman, 1974. The feeding behavior of Daphnia pulex from Lake Winnebago, Wisconsin. Limnol. Oceanogr. 19: 105–109.Google Scholar
  13. Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.Google Scholar
  14. Boström, B., 1984. Potential mobility of phosphorus in different types of lake sediments. Int Revue ges. Hydrobiol. 69: 457–474.Google Scholar
  15. Brabrand, Å., B. Faafeng, T. Källquist & J. P. Nilsson, 1984. Can iron defecation from fish influence phytoplankton production and biomass in eutrophic lakes? Limnol. Oceanogr. 29: 1330–1334.Google Scholar
  16. Brabrand, Å. B. Faafeng & J. P. Nilsson, 1982. Prosjekt Produksjonsforhold i eutrofierte systemer. In In H. Reinertsen, G. Knutsen & M. Heldal (eds.), NTNF's Program eutrofieringsforskning — slutrapport fase I, 1978–82. Norges Teknisk-Naturvetenskapelige Forskningsråd Trondheim: 14–18.Google Scholar
  17. Canfield, F. E. Jr., K. A. Langeland, M. J. Maceina, W. T. Haller & J. V. Shireman, 1983. Trophic state classification of lakes with aquatic macrophytes. Can. J. Fish. aquat. Sci. 40: 1713–1718.Google Scholar
  18. Carpenter, R. S., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.Google Scholar
  19. Davis, R. B., 1974a. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.Google Scholar
  20. Davis, R. B., 1974b. Tubificids alter profiles of redox potential and pH in profundal lake sediment. Limnol. Oceanogr. 19: 342–346.Google Scholar
  21. Davis, R. B., D. L. Thurlow & F. E. Brewster, 1975. Effects of burrowing tubificid worms on the exchange of phosphorus between lake sediment and overlying water. Verh. int. Verein. Limnol. 19: 382–394.Google Scholar
  22. Edwards, R. W., 1958. The effect of larvae of Chironomus riparius Meigen on the redox potentials of settled activated sludge. Ann. appl. Biol. 46: 457–464.Google Scholar
  23. Edwards, R. W. & H. L. J. Rolley, 1965. Oxygen consumption of river muds. J. Ecol. 53: 1–19.Google Scholar
  24. Esjmont-Karabin, J. 1984. Phosphorus and nitrogen excretion by lake zooplankton (Rotifers and Crustaceans) in relationship to individual body weights of the animals, ambient temperature and presence or absence of food. Ekol. pol. 32: 3–42.Google Scholar
  25. Fenchel, T., 1974. Intrinsic rate of increase: the relationship with body size. Oecologia 14: 317–326.Google Scholar
  26. Ferrante, J. G., 1976. The role of zooplankton in the intrabiocoenotic phosphorus cycle and factors affecting phosphorus excretion in a lake. Hydrobiologia 49: 203–214.Google Scholar
  27. Ferrante, J. G. & J. I. Parker, 1977. Transport of diatom frustrules by copepod fecal pellets to the sediments of Lake Michigan. Limnol. Oceanogr. 22: 92–98.Google Scholar
  28. Fry, J. C., 1982. Interactions between bacteria and benthic invertebrates. In D. B. Nedwell & C. M. Brown (eds.), Sediment microbiology, Academic Press, Lond: 171–201.Google Scholar
  29. Gallepp, G. W., J. F. Kitchell & S. M. Bartell, 1978. Phosphorus release from the lake sediments as affected by chironomids. Verh. int. Verein. Limnol. 20: 458–465.Google Scholar
  30. Gallepp, G. W., 1979. Chironomid influence on phosphorus release in sediment-water microcosms. Ecology 60: 547–556.Google Scholar
  31. Gardner, W. S., T. F. Nalepa, M. A. Quigley & J. M. Malczyk, 1981. Release of phosphorus by certain benthic invertebrates. Can. J. Fish. aquat. Sci. 38: 978–981.Google Scholar
  32. Goldspink, C. R., & D. B. C. Scott, 1971. Vertical migration of Chaoborus flavicans in a Scottish loch. Freshwat. Biol. 1: 411–421.Google Scholar
  33. Golley, F. B., 1973. Impact of small mammals on primary production, In J. A. Gessaman (ed.) Ecological energetics of homeotherms. Utah State Univ Press, Logan: 142–147.Google Scholar
  34. Graneli, W., 1979a. The influence of Chironomus plumosus larvae on the oxygen uptake of sediment. Arch. Hydrobiol. 87: 385–403.Google Scholar
  35. Graneli, W., 1979b. The influence of Chironomus plumosus larvae on the exchange of dissolved substances between sediment and water. Hydrobiologia 66: 149–159.Google Scholar
  36. Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. Amer. Nat. 94: 421–425.Google Scholar
  37. Håkansson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer Verlag, Berlin, 316 pp.Google Scholar
  38. Haney, J. F. & D. J. Hall, 1976. Diel migration and filter-feeding activities of Daphnia. Arch. Hydrobiol. 75: 87–132.Google Scholar
  39. Hansson, L. -A., L. Johansson & L. Persson, 1987. Effects of fish grazing on nutrient release and succession of primary producers. Limnol. Oceanogr. 32: 723–729.Google Scholar
  40. Henrikson, L., H. G. Nyman, H. G. Oscarson, & J. A. E. Stenson, 1980. Trophic changes, without changes in the external nutrient loading. Hydrobiologia 68: 257–263.Google Scholar
  41. Holdren, G. C. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Envir. Sci. Technol. 14: 79–87.Google Scholar
  42. Hrbacek, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on the species composition on zooplankton and the intensity of metabolism of the whole plankton association. Verh. int. Ver. Limnol. 14: 192–195.Google Scholar
  43. Hurlbert, S. H., J. Zedler & D. Fairbanks, 1972. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science 175: 639–641.Google Scholar
  44. Hutchinson, G. E. 1967. A treatise on Limnology (2). John Wiley & Sons Inc., NY, 1115 pp.Google Scholar
  45. Iwasa, Y. 1982. Vertical migration of zooplankton: a game between predator and prey. Am. Nat. 120: 171–180.Google Scholar
  46. Johannes, R. E., 1964. Phosphorus excretion and body size in marine animals: microzooplankton and nutrient regeneration. Science 146: 923–924.Google Scholar
  47. Jonasson, P. M., 1972. Ecology and production of the profundal benthos in relation to phytoplankton in Lake Esrom. Oikos suppl. 14: 1–148.Google Scholar
  48. Kitchell, J. F., J. F. Koonce & P. S. Tennis, 1975. Phosphorus flux through fishes. Verh. int. Ver. Limnol. 19: 2478–2484.Google Scholar
  49. Kitchell, J. F., R. V. O'Neill, D. Webb, G. W. Galepp, S. M. Bartell, J. F. Koonce, & B. S. Ausmus, 1979. Consumer regulation of nutrient cycling. BioScience 29: 28–34.Google Scholar
  50. Krezoski, J. R., S. C. Mozley & J. A. Robbins, 1978. Influence of benthic macroinvertebrates on mixing of profundal sediments in southeastern Lake Huron. Limnol. Oceanogr. 23: 1011–1016.Google Scholar
  51. Lamarra, V. A., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh. int. Ver. Limnol. 19: 2461–2468.Google Scholar
  52. Leah, R. T., B. Moss & D. E. Forrest. 1980. The role of predation in causing major changes in the limnology of a hypereutrophic lake. Int. Revue ges. Hydrobiol. 65: 223–247.Google Scholar
  53. Lee, J. J. & Inman, D. L., 1975. The ecological role of consumers — an aggregated systems view. Ecology 56: 1455–1458.Google Scholar
  54. Lehman, J. T. 1980a. Release and cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.Google Scholar
  55. Lehman, J. T. 1980b. Nutrient cycling as an interface between algae and grazers in freshwater communities. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. The University Press of New England, Hanover, (N.H.), Lond.: 251–263.Google Scholar
  56. Lembi, C. A., B. G. Ritenour, E. M. Iverson & E. C. Forss, 1978. The effects of vegetation removal by grass carp on water chemistry and phytoplankton in Indian ponds. Trans. am. Fish. Soc. 107: 161–171.Google Scholar
  57. Lessmark, O., 1983. Competition between perch (Perca fluviatilis) and roach (Rutilis rutilis) in south Swedish lakes. Inst. of Limnology, Univ. of Lund, Lund. 172 pp.Google Scholar
  58. Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.Google Scholar
  59. Lynch, M. & J. Shapiro, 1981. Predation, enrichment, and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.Google Scholar
  60. Matisoff, G., J. B. Fisher & S. Matis, 1985. Effects of benthic macroinvertebrates on the exchange of solutes between sediments and freshwater. Hydrobiologia 122: 19–33.Google Scholar
  61. Merritt, R. W., K. W. Cummins & T. M. Burton, 1984. The role of aquatic insects in the processing and cycling of nutrients. In V. H. Resh & D. M. Rosenberg (eds.), The ecology of aquatic insects. Praeger, NY: 134–163.Google Scholar
  62. Milbrink, G., 1973. On the vertical distribution of oligochaetes in lake sediments. Rep. Inst. Freshw. Res. Drottningholm 53: 34–50.Google Scholar
  63. Mitzner, L., 1978. Evaluation of biological control of nuisance aquatic vegetation by grass carp. Trans. am. Fish. Soc. 107: 135–145.Google Scholar
  64. Murdoch, W. W., 1966. Community structure, population control and competition — A critique. Amer. Nat. 100: 219–226.Google Scholar
  65. Nakashima, B. S. & W. C. Leggett, 1980. The role of fishes in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 37: 1540–1549.Google Scholar
  66. Nakashima, B. S. & W. C. Leggett, 1982. How important is phosphorus excretion by fish to the phosphorus dynamics of lakes? Can. J. Fish. aquat. Sci. 39: 364–366.Google Scholar
  67. O'Neill, R. V. 1976. Ecosystem persistence and heterotrophic regulation. Ecology 57: 1244–1353.Google Scholar
  68. Odum, H. T. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 27: 55–112.Google Scholar
  69. Parma, S., 1971. Chaoborus flavicans (Meigen) (Diptera, Chaoboridae): an autecological study. Ph. d. thesis Groningen.Google Scholar
  70. Persson, L., 1983. Food consumption and the significance of detritus and algae to intraspecific competition in roach Rutilis rutilis in a shallow eutrophic lake. Oikos 41: 118–125.Google Scholar
  71. Peters, R. H. & F. H. Rigler, 1973. Phosphorus release by Daphnia. Limnol. Oceanogr. 18: 821–839.Google Scholar
  72. Peter, T., 1977. Bioturbation and exchange of chemicals in the mud-water interface. In H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr. W. Junk, The Hague.: 216–226.Google Scholar
  73. Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–170.Google Scholar
  74. Prejs, A. & H. Jackowska, 1978. Lake macrophytes as the food of roach (Rutilus rutilus) and rudd (Scardinius erythrophthalmus L.). I. Species composition and dominance relations in the lake. Ekol. Pol. 26: 429–438.Google Scholar
  75. Revsbech, N. P., J. Sörensen, T. H. Blackburn & J. P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 25: 403–411.Google Scholar
  76. Schindler, D. W. & G. W. Comita. 1972. The dependence of primary production upon physical and chemical factors in a small senescing lake, including the effects of complete winter oxygen depletion. Arch. Hydrobiol. 69: 413–451.Google Scholar
  77. Shapiro, J., 1980. The importance of trophic-level interactions to the abundance and species composition of algae in lakes. In J. Barica & L. R. Mur (eds.), Hypertrophic ecosystems. Developments in hydrobiology 2. Dr. W. Junk, The Hague: 105–116.Google Scholar
  78. Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation — an ecosystem approach to lake restoration. In P. L. Brezonik & J. L. Fox (es.) Water quality management through biological control. US EPA Report No. ENV-07–75–1, Univ. Florida, Gainsville: 85–96.Google Scholar
  79. Shapiro, J. & R. Carlson, 1982. Comment of the role of fish in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 39: 364.Google Scholar
  80. Spencer, C. N. & D. L. King, 1984. Role of fish in regulation of plant and animal communities in eutrophicated ponds. Can. J. Fish. aquat. Sci. 41: 1851–1855.Google Scholar
  81. Starkel, W. M., 1985. Predicting the effect of macrobenthos on the sediment/water flux of metals and phosphorus. Can. J. Fish. Aquat. Sci. 42: 95–100.Google Scholar
  82. Stenson, J. A. E., T. Bohlin, L. Henrikson, B. I. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effects of fish removal from a small lake. Verh. int. Verein. Limnol. 20: 794–801.Google Scholar
  83. Sternik, K. -H., 1983. Untersuchungen zur Phosphor-Abgabe und inbesondere zur Orthophosphat-Exkretion junger Karpfen (Cyprinus carpio L.) Ein Beitrag zur Phosphor-Remobilisierung in Gewässern. Arch. Hydrobiol. Suppl. 66: 1–82.Google Scholar
  84. Taylor, W. D. & D. R. S. Lean, 1981. Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Can. J. Fish. aquat. Sci. 38: 1316–1321.Google Scholar
  85. Tessenow, U., 1964. Experimentaluntersuchungen zur Kieselsäurerückfuhrung aus dem Schlamm der Seen durch Chironomidenlarven (Plumosus-Gruppe). Arch. Hydrobiol. 60: 497–504.Google Scholar
  86. Walshe, B. M., 1950. The feeding habits of certain chironomid larvae (subfamily Tendipedinae). Proc. Zool. Soc. Lond. 121: 63–79.Google Scholar
  87. Warde, A., van, 1983. Aerobic and anaerobic amonia production by fish. Comp. Biochem. Physiol. 74B: 675–684.Google Scholar
  88. Webb, P. W., 1978. Partitioning of energy into metabolism and growth. In S. D. Gerking (ed.), Ecology of freshwater fish production. Blackwell Scientific Publications, Oxford, pp. 184–214.Google Scholar
  89. Weissenbach, H., 1974. Untersuchungen zum Phosphorhaushalt eines Hochgebirgsees (Voderer Finstertaler See, Kuhtai, Tirol) unter besonderer Berucksichting der Sedimente. Ph. d. thesis, Leopoldt-Franzens-Universität, Innsbruck.Google Scholar
  90. Wisniewski, R. J. & M. Planter, 1985. Exchange of phosphorus across sediment-water interface (with special attention to the influence of biotic factors) in several lakes of different trophic status. Verh. int. Verein. Limnol. 22: 3345–3349.Google Scholar
  91. Wood, L. W., 1975. Role of oligochaetes in the circulation of water and solutes across the mud-water interface. Verh. Intenat. Verein. Limnol. 19: 1530–1533.Google Scholar
  92. Wright, D., W. J. O'Brien & G. L. Vinyard, 1980. Adaptive value of vertical migration: A simulation model argument for the predation hypothesis. In W. C. Kerfoot (ed.) Evolution and ecology of zooplankton communities. The University Press of New England, Hanover, (N. H.); Lond.: 138–147.Google Scholar
  93. Wright, D. I. & J. Shapiro, 1984. Nutrient reduction by biomanipulation: An unexpected phenomenon and its possible cause. Verh. int. Ver. Limnol. 22: 518–524.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Gunnar Andersson
  • Wilhelm Granéli
    • 1
  • Jan Stenson
    • 2
  1. 1.Department of LimnologyUniversity of LundLundSweden
  2. 2.Department of ZoologyUniversity of GöteborgGöteborgSweden

Personalised recommendations