, Volume 170, Issue 1, pp 245–266 | Cite as

Influence of aquatic macrophytes on phosphorus cycling in lakes

  • Wilhelm Granéli
  • Doris Solander


Emergent macrophytes take up their phosphorus exclusively from the sediment. Submerged species obtain phosphorus both from the surrounding water and from the substrate, but under normal pore and lake water phosphorus concentrations, substrate uptake dominates. Release of phosphorus from actively growing macrophytes (both submerged and emergent) is minimal and epiphytes obtain phosphorus mainly from the water. Decaying macrophytes may act as an internal phosphorus source for the lake and add considerable quantities of phosphorus to the water. A large part of the released phosphorus is often retained by the sediments. In perennial macrophytes the amount of phosphorus released from decaying shoots is dependent on the degree of phosphorus conservation within the plant. Macrophyte stands may also be a permanent phosphorus sink due to burial of plant litter. Macrophytes affect the chemical environment (oxygen, pH), which in turn has effects on the phosphorus cycling in lakes. However, the impact of aquatic macrophytes on whole-lake phosphorus cycling is largely unknown. Controlled full-scale harvesting, herbicide or herbivory experiments are almost totally lacking. Emergent macrophytes respond positively to eutrophication, but fertilization experiments have shown that nitrogen rather than phosphorus may be the key element. Submerged macrophytes are adversely affected by a large increase in the external phosphorus input to a lake. This effect may be caused by epiphyte shading, phytoplankton shading or deposition of unfavourable sediments.

Key words

phosphorus macrophyte aquatic plant sediment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. S. & R. T. Prenkti, 1982. Biology, metabolism and function of littoral submersed weedbeds of Lake Wingra, Wisconsin, USA: A summary and review. Arch. Hydrobiol./Suppl. 62: 333–409.Google Scholar
  2. Andersen, F. Ö. 1978. Effects of nutrient level on the decomposition of Phragmites communis Trin. Arch. Hydrobiol. 84: 42–54.Google Scholar
  3. Andersen, F. Ö. & J. I. Hansen, 1982. Nitrogen cycling and microbial decomposition in sediments with Phragmites australis (Poaceae). Hydrobiol. Bull. 16: 11–19.Google Scholar
  4. Anderson, M. R. & J. Kalff, 1986. Nutrient limitations of Myriophyllum spicatum growth in situ. Freshwat. Biol. 16: 735–743.Google Scholar
  5. Andersson, B., 1978. Vegetationsundersökningar i Mälaren II. 1970–77. Staten Naturvårsverk, Stockholm, PM-series 1059, 32 pp. (in Swedish, with English summary).Google Scholar
  6. Auclair, A. N. D., 1979. Factors affecting tissue nutrient concentrations in a Scirpus-Equisetum wetland. Ecology 60: 337–348.Google Scholar
  7. Barko, J. W. & R. M. Smart, 1978. The growth and biomass distribution of two emergent freshwater plants, Cyperus esculentus and Scirpus validus, on different sediments. Aquat. Bot. 5: 109–117.Google Scholar
  8. Barko, J. W. & R. M. Smart, 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwat. Biol. 10: 229–238.Google Scholar
  9. Barko, J. W. & R. M. Smart, 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 76: 1328–1340.Google Scholar
  10. Barsdate, J. R. & R. T. Prentki, 1973. Nutrient metabolism and water chemistry in lakes and ponds of the Arctic coastal tundra. US Tundra Biome Data Report, Fairbanks, Alaska: 73–127.Google Scholar
  11. Barsdate, R. J. M. Nebert & C. P. McRoy, 1974. Lagoon contributions to sediments and water on the Bering Sea. In D. W. Hood & E. J. Kelly (eds), The Oceanography of the Bering Sea. Institute of Marine Science, University of Alaska, Fairbanks.Google Scholar
  12. Bayly, I. L. & T. A. O'Neill, 1972. Seasonal ionic fluctuations in a Phragmites communis community. Can. J. Bot. 50: 2103–2109.Google Scholar
  13. Björk, S., 1967. Ecologic investigations of Phragmites communis. Studies in theoretic and applied limnology. Folia limnol. Scand. 14: 1–248.Google Scholar
  14. Bole, J. B. & J. R. Allan, 1978. Uptake of phosphorus from sediment by aquatic plants, Myriophyllum spicatum and Hydrilla verticillata. Wat. Res. 12: 353–358.Google Scholar
  15. Boston, H. L. & M. A. Perkins, 1982. Water column impacts of macrophyte decomposition beneath fiberglass screens. Aquat. Bot. 14: 15–27.Google Scholar
  16. Bottomley, E. Z. & I. L. Bayly, 1984. A sediment porewater sampler used in root zone studies of the submerged macrophyte, Myriophyllum spicatum. Limnol. Oceanogr. 29: 671–673.Google Scholar
  17. Boyd, C. E., 1978. Chemical composition of wetland plants. In R. E. Good, D. F. Whigham & R. L. Simpson (eds), Freshwater wetlands. Ecological processes and management potential. Academic Press, NY: 155–167.Google Scholar
  18. Boyle, T. P., 1979. Responses of experimental lenthic aquatic ecosystems to suppression of rooted plants. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management and ecosystem consequences of lake harvesting. Center for Biotic Systems, Inst. Environmental Studies, Univ. Wisconsin, Madison, 269–283.Google Scholar
  19. Bristow, J. W., 1975. The structure and function of roots in aquatic vascular plants. In J. G. Torrey & D. T. Clarkson (eds.), The Development and Function of Roots. Academic Press, NY: 221–233.Google Scholar
  20. Bristow, J. M. & M. Whitcombe, 1971. The role of roots in the nutrition of aquatic vascular plants. Am. J. Bot. 58: 8–13.Google Scholar
  21. Brock, Th. C. M., M. C. M. Bongaerts, G. J. M. A. Heijnen & J. H. F. G. Heijthuijsen, 1983. Nitrogen and phosphorus accumulation and cycling by Nymphoides peltata (GMEL.) O. KUNTZE (Menyanthaceae). Aquat. Bot. 17: 189–214.Google Scholar
  22. Carignan, R., 1982. An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes. Can. J. Fish. aquat. Sci. 39: 243–247.Google Scholar
  23. Carignan, R., 1984. Sediment geochemistry in a eutrophic lake colonized by the submersed macrophyte Myriophyllum spicatum. Verh. int. Ver. Limnol. 22: 355–370.Google Scholar
  24. Carignan, R., 1985. Nutrient dynamics in a littoral sediment colonized by the submersed macrophyte Myriophyllum spicatum. Can. J. Fish. aquat. Sci. 42: 1303–1311.Google Scholar
  25. Carignan, R. & J. Kalff, 1979. Quantification of the sediment phosphorus available to aquatic macrophytes. J. Fish. Res. Bd. Can. 36: 1002–1005.Google Scholar
  26. Carignan, R. & J. Kalff, 1980. Phosphorus sources for aquatic needs: water or sediments. Science 202: 987–988.Google Scholar
  27. Carignan, R. & J. Kalff, 1982. Phosphorus release by submerged macrophytes: Significance to epiphyton and phytoplankton. Limnol. Oceanogr. 27: 419–427.Google Scholar
  28. Carpenter, S. R., 1980. Enrichment of Lake Wingra, Wisconsin, by submersed macrophyte decay. Ecology 61: 1145–1155.Google Scholar
  29. Carpenter, S. R., 1981. Submersed vegetation: an internal factor in lake ecosystem succession. Am. Nat. 118: 372–383.Google Scholar
  30. Carpenter, S. R. & M. S. Adams, 1976. The macrophyte tissue nutrient pool of a hardwater eutrophic lake: implications for macrophyte harvesting. Aquat. Bot. 3: 239–255.Google Scholar
  31. Carpenter, S. R. & M. S. Adams, 1978. Macrophyte control by harvesting and herbicides: Implications for phosphorus cycling in Lake Wingra, Wisconsin. J. Aquat. Plant. Manage. 16: 20–23.Google Scholar
  32. Carpenter, S. R., J. J. Elser & K. M. Olson, 1983. Effects of roots of Myriophyllum verticillatum L. on sediment redox conditions. Aquat. Bot. 17: 243–249.Google Scholar
  33. Cattaneo, A. & J. Kalff, 1979. Primary production of algae growing on natural and artificial aquatic plants: a study of interactions between epiphytes and their substrate. Limnol. Oceanogr. 24: 1031–1037.Google Scholar
  34. Chambers, P. A. & J. Kalff, 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can. J. Fish. aquat. Sci. 42: 701–709.Google Scholar
  35. Chapin, F. S., 1980. The mineral nutrition of wild plants. - Ann. Rev. Ecol. Syst. 11: 233–260.Google Scholar
  36. Clarkson, D. T. & J. B. Hansson, 1980. The mineral nutrition of higher plants. Ann. Rev. Pl. Physiol. 31: 239–298.Google Scholar
  37. Crook, C. C., R. R. Boar & B. Moss, 1983. The decline of reedswamp in the Norfolk Broadland: causes, consequences and solutions. - Univ. of East Anglia, Norwich, 132 pp.Google Scholar
  38. Davis, C. B. & A. G. van der Valk, 1978. Litter decomposition in prairie glacial marshes. In R. E. Good, D. F. Whigham & R. L. Simpson (eds), Freshwater wetlands. Ecological processes and management potential. Academic Press, NY, 99–113.Google Scholar
  39. Davis, C. B. & A. G. van der Valk, 1983. Uptake and release of nutrients by living and decomposing Typha glauca Godr. tissues at Eagle Lake, Iowa. Aquat. Bot. 16: 75–89.Google Scholar
  40. DeMarte, J. A. & R. T. Hartman. 1974. Studies on absorption of 32P, 59Fe, and 45Ca by water-milfoil (Myriophyllum exalbescens Fernald). Ecology 55: 188–194.Google Scholar
  41. Denny, P., 1980. Solute movement in submerged angiosperms. Biol. Rev. 55: 65–92.Google Scholar
  42. Dykyjova, D., 1978. Nutrient uptake by littoral communities of helophytes. In D. Dykyjova & J. Kvet (eds), Pond littoral ecosystems. Springer-Verlag, Berlin: 257–277.Google Scholar
  43. Ekstam, B., T. Bengtsson & J. Landin, 1985. Konsekvenser for vattenlevande organismer av vasskörd vintertid i sjön Tåkern (Effects on aquatic organisms from reed harvesting during wintertime in Lake Tåkern). Swedish National Environment Protection Board PM 1993, 111 pp. (In Swedish).Google Scholar
  44. Fiala, K., 1978. Seasonal development of helophyte polycormones and relationship between underground and aboveground organs. In D. Dykyjova & J. Kvet (eds), Pond Littoral Ecosystems. Springer-Verlag, Berlin: 404–408.Google Scholar
  45. Gabrielson, J. O., M. A. Perkins & E. B. Welsh, 1984. The uptake, translocation and release of phosphorus by Elodea densa. Hydrobiologia 111: 43–48.Google Scholar
  46. Gentner, S.-R., 1977. Uptake and transport of iron and phosphate by Vallisneria spiralis L. Aquat. Bot. 3: 267–27.Google Scholar
  47. Godmaire, H. & C. Nalewajko, 1985. Axenic culture of Myriophyllum spicatum L.: importance to extracellular product estimates. Aquat. Bot. 26: 385–392.Google Scholar
  48. Gopal, B. & K. P. Sharma, 1984. Seasonal changes in concentration of major nutrient elements in the rhizomes and leaves of Typha elephantina Roxb. Aquat. Bot. 20: 65–73.Google Scholar
  49. Graneli, W., 1980. Energivass, rapport 2. Inst. of Limnology, Univ. Lund. (In Swedish), 37 pp.Google Scholar
  50. Graneli, W., 1983. Standing crop and mineral content fo reed in Sweden — management of reed stands to maximize harvestable biomass. First European Workshop on Aquatic Macrophytes, Illmitz, Austria. Univ. Lund, 9 pp.Google Scholar
  51. Graneli, W., 1984. Reed Phragmites australis (Cav.) Trin. ex Steudel as an energy source in Sweden. Biomass 4: 183–208.Google Scholar
  52. Graneli, W., 1985. Biomass response after nutrient additions to natural stand of reed, Phragmites australis. Verh. int. Ver. Limnol. 22: 2956–2961.Google Scholar
  53. Graneli, W., M. D. Sytsma & S. Weisner, 1983. Changes in biomass, nonstructural carbohydrates, nitrogen and phosphorus content of the rhizomes and shoots of Phragmites australis during spring growth. Proc. Int. Symp. Aquat. Macrophytes, Nijmegen, 18–23, September, 1983: 78–83.Google Scholar
  54. Hansson, L.-A. & W. Graneli, 1984. Effects of winter harvest on water and sediment chemistry in a stand of reed (Phragmites australis). Hydrobiologia 112: 131–136.Google Scholar
  55. Ho, Y. B., 1979. Chemical composition studies on some aquatic macrophytes in three Scottish lochs. I. Chlorophyll, ash, carbon, nitrogen and phosphorus. Hydrobiologia 63: 161–166.Google Scholar
  56. Ho, Y. B., 1981. Mineral composition of Phragmites australis in Scottish lochs as related to eutrophication. I. Seasonal changes in organs. Hydrobiologia 85: 227–237.Google Scholar
  57. Hopkinson, C. S. & J. P. Schubauer, 1984. Static and dynamic aspects of nitrogen cycling in the salt marsh graminoid Spartina alterniflora. Ecology 65: 961–969.Google Scholar
  58. Howard-Williams, C., 1985. Cycling and retention of nitrogen and phosphorus in wetlands: a theoretical and applied perspective. Freshwat. Biol. 15: 391–431.Google Scholar
  59. Howard-Williams, C. & B. R. Davies, 1979. The rates of dry matter and nutrient loss from decomposing Potamogeton pectinatus in a brackish south-temperate coastal lake. Freshwat. Biol. 9: 13–21.Google Scholar
  60. Howard-Williams, C. & B. R. Allanson, 1981. Phosphorus cycling in a dense Potamogeton pectinatus. L. bed. Oecologia 49: 56–66.Google Scholar
  61. Huebert, D. B. & P. R. Gorham, 1983. Biphasic mineral nutrition of the submersed aquatic macrophyte Potamogeton pectinatus L. Aquat. Bot. 16: 269–284.Google Scholar
  62. Hutchinson, G. E., 1975. A treatise on limnology, Volume III. Limnological Botany. J. Wiley & Sons, NY, 660 pp.Google Scholar
  63. Jacoby, J. M., D. D. Lynch, E. B. Welch & M. A. Perkins, 1982. Internal phosphorus loading in a shallow eutrophic lake. Wat. Res. 16: 911–919.Google Scholar
  64. Jaynes, M. L. & S. R. Carpenter, 1986. Effects of vascular and nonvascular macrophytes on sediment redox and solute dynamics. Ecology 67: 875–882.Google Scholar
  65. Jewell, W. J., 1971. Aquatic weed decay: dissolved oxygen utilization and nitrogen and phosphorus regeneration. J. Wat. Pollut. Cont. Fed. 43: 1457–1467.Google Scholar
  66. Jones, R. C., K. Walti & M. S. Adams, 1983. Phytoplankton as a factor in the decline of the submersed macrophyte Myriophyllum spicatum L. in Lake Wingra, Wisconsin, USA. Hydrobiologia 107: 213–219.Google Scholar
  67. Jupp, B. P. & D. H. N. Spence, 1977. Limitations on macrophytes in a eutrophic lake, Loch Leven. 1. Effects of phytoplankton. J. Ecol. 65: 175–186.Google Scholar
  68. Kadlec, R. H., 1983. The Bellaire wetland: wastewater alteration and recovery. Wetlands 3: 44–63.Google Scholar
  69. Kairesalo, T. & A. Uusi-rauva, 1963. Phosphorus release by an emergent macrophyte: significance to epiphyton. Proc. Int. Symp. Aquat. Macrophyte, Nijmegen, 18–23 September, 1983: 101–108.Google Scholar
  70. Kemp, W. H. & L. Murray, 1986. Oxygen release from roots of the submerged macrophyte Potamogeton pectinatus L.: regulating factors and ecological implications. Aquat. Bot. 26: 271–283.Google Scholar
  71. Kirkman, H., F. B. Griffiths & R. R. Parker, 1979. The release of reactive phosphate by a Phragmites australis seagrass community. Aquat. Bot. 6: 329–337.Google Scholar
  72. Kistritz, R. U., 1978. Recycling of nutrients in an enclosed aquatic community of decomposing macrophytes (Myriophyllum spicatum). Oikos 30: 561–569.Google Scholar
  73. Klötzli, F. & S. Zust, 1973. Nitrogen regime in reedbeds. Pol. Ach. Hydrobiol.: 20: 131–136.Google Scholar
  74. Kvet, J., 1973. Mineral nutrients in shoots of reed (Phragmites communis Trin.). Pol. Arch. Hydrobiol. 20: 137–147.Google Scholar
  75. Landers, D. H., 1982. Effects of naturally senescing aquatic macrophytes on nutrient chemistry and chlorophyll a of surrounding waters. Limnol. Oceanogr. 27: 428–439.Google Scholar
  76. Langeland, K. A., D. L. Sutton & D. E. Canfield, Jr., 1983. Growth response of Hydrilla to extractable nutrients in prepared substrates. J. Freshwat. Ecol. 2: 263–272.Google Scholar
  77. Lie, G. B., 1979. The influence of aquatic macrophytes on the chemical cycles of the littoral. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Center for Biotic Systems, Inst. of Environmental Studies, Univ. Wisconsin, Madison: 101–126.Google Scholar
  78. Loucks, O. L. & P. R. Weiler, 1979. The effects of harvest removal of phosphorus on remineralized P sources in a shallow lake. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Center for Biotic Systems, Inst. Environmental Studies, Univ. of Wisconsin, Madison: 191–207.Google Scholar
  79. Mason, C. F. & R. J. Bryant, 1975. Production, nutrient content and decomposition of Phragmites communis Trin. and Typha angustifolia L. J. Ecol. 63: 71–96.Google Scholar
  80. McRoy, C. P. & R. J. Barsdate, 1970. Phosphate absorption in eelgrass. Limnol. Oceanogr. 15: 6–13.Google Scholar
  81. McRoy, C. P., R. J. Barsdate & M. Nebert, 1972. Phosphorus cycling in an eelgrass (Zostera marina L.) ecosystem. Limnol. Oceanogr. 17: 58–67.Google Scholar
  82. Michaud, M. T., G. J. Atchison, A. W. McIntosh, R. A. Mayes & D. W. Nelson, 1979. Changes in phosphorus concentrations in a eutrophic lake as a result of macrophyte-kill following herbicide application. Hydrobiologia 66: 105–111.Google Scholar
  83. Morris, J. T. & K. Lajtha, 1986. Decomposition and nutrient dynamics of litter from four species of freshwater emergent macrophytes. Hydrobiologia 131: 215–223.Google Scholar
  84. Moss, B., 1980. Further studies on the palaeolimnolgy and changes in the phosphorus budget of Barton Broad, Norfolk. Freshwat. Biol. 10: 261–279.Google Scholar
  85. Mulligan, H. F., A. Baranowski & R. Johnson, 1976. Nitrogen and phosphorus fertilization of aquatic vascular plants and algae in replicated ponds I. Initial response to fertilization. Hydrobiologia 48: 109–116.Google Scholar
  86. Muztar, J. A., S. J. Slinger & J. H. Burton, 1978. Chemical composition of aquatic macrophytes. 3. Mineral composition of freshwater macrophytes and their potential for mineral nutrient removal from lake water. Can. J. Plant Sci. 58: 851–862.Google Scholar
  87. Nichols, D. S., 1983. Capacity of natural wetlands to remove nutrients from wastewater. J. Wat. Pollut. Cont. Fed. 55: 495–505.Google Scholar
  88. Nichols, D. S. & D. R. Keeney, 1973. Nitrogen and phosphorus release from decaying water milfoil. Hydrobiologia 42: 509–525.Google Scholar
  89. Ogwada, R. A., K. R. Reddy & D. A. Graetz, 1984. Effects of aeration and temperature on nutrient regeneration from selected aquatic macrophytes. J. envir. Qual. 13: 239–243.Google Scholar
  90. Orth, R. J. & K. A. Moore, 1983. Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation. Science 222: 51–53.Google Scholar
  91. Otsuki, A. & R. G. Wetzel, 1972. Coprecipitation of phosphate with carbonates in a marl lake. Limnol. Oceanogr. 17: 763–767.Google Scholar
  92. Penhale, P. A. & G. W. Thayer, 1980. Uptake and transfer of carbon and phosphorus by eelgrass (Zostera marina L.) and its epiphytes. J. exp. mar. Biol. Ecol. 42: 113–123.Google Scholar
  93. Peterson, S. A., W. L. Smith & K. W. Malueg, 1974. Fullscale harvest of aquatic plants: nutrient removal from a eutrophic lake. J. Wat. Pollut. Cont. Fed. 46: 697–707.Google Scholar
  94. Peverley, J. H. & R. L. Johnson, 1979. Nutrient chemistry in herbicide-treated ponds of differing fertility. J. envir. Qual. 8: 294–300.Google Scholar
  95. Phillips, L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.Google Scholar
  96. Planter, M., 1970a. Elution of mineral components out of dead reed Phragmites communis Trin. Pol. Arch. Hydrobiol. 17: 357–362.Google Scholar
  97. Planter, M., 1970b. Physico-chemical properties of the water of reed-belts in Mikolajskie, Taltowisko and Sniardwy lakes. Pol. Arch. Hydrobiol. 17: 337–356.Google Scholar
  98. Polunin, N. V. C., 1982. Processes contributing to the decay of reeds (Phragmites australis) litter in fresh water. Arch. Hydrobiol. 94: 182–209.Google Scholar
  99. Prentki, R. T., 1979. Depletion of phosphorus from sediment colonized by Myriophyllum spicatum L. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Center for Biotic Systems, Inst. of Environmental Studies, Univ. Wisconsin, Madison, 161–176.Google Scholar
  100. Prentki, R. T., T. D. Gustafson & M. S. Adams, 1978. Nutrient movements in lakeshore marshes. In R. E. Good, D. F. Whigham & R. L. Simpson (eds), Freshwater wetlands. Ecological processes and management potential, Academic Press, NY: 169–194.Google Scholar
  101. Prentki, R. T., M. S. Adams, S. R. Carpenter, A. Gasith, C. S. Smith & P. R. Weiler, 1979. The role of submersed weedbeds in internal loading and interception of allochthonous material in Lake Wingra, Wisconsin, USA. Arch. Hydrobiol./Suppl. 57: 221–250.Google Scholar
  102. Reimold, J. R., 1972. The movements of phosphorus through the salt march cord grass, Spartina alterniflora Loisel. Limnol. Oceanogr. 17: 606–611.Google Scholar
  103. Riber, H. H., 1984. Phosphorus uptake from water by the macrophyte-epiphyte complex in a Danish lake: relationship to plankton. Verh. int. Ver. Limnol. 22: 790–794.Google Scholar
  104. Riber, H. H., J. P. Sörensen & A. Kowalczewski, 1983. Exchange of phosphorus between water, macrophytes and epiphytic periphyton in littoral of Mikolajskie Lake, Poland. In R. G. Wetzel (ed), Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers, The Hague: 235–243.Google Scholar
  105. Rice, D. L., 1982. The detritus nitrogen problem: new observations and perspectives from organic chemistry. Mar. Ecol. Prog. Ser. 9: 153–162.Google Scholar
  106. Richardson, C. J., 1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228: 1424–1427.Google Scholar
  107. Ryan, J. B., D. N. Riemer & S. J. Toth, 1972. Effects of fertilization on aquatic plants, water, and bottom sediments. Weed Science 20: 482–486.Google Scholar
  108. Rörslett, B., D. Berge & S. Johansen, 1985. Mass invasion of Elodea canadensis in a mesotrophic, South Norwegian lake — impact on water quality. Verh. int. Ver. Limnol. 22: 2920–2926.Google Scholar
  109. Rörslett, B., D. Berge & S. W. Johansen, 1986. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot. 26: 325–340.Google Scholar
  110. Sand-Jensen, K. & M. Söndergaard, 1981. Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Int. Revue ges. Hydrobiol. 66: 529–552.Google Scholar
  111. Sand-Jensen, K., C. Prahl & H. Stokholm, 1982. Oxygen release from roots of submersed aquatic macrophytes. Oikos 38: 349–354.Google Scholar
  112. Sand-Jensen, K. & J. Borum, 1984. Epiphyte shading and its effect on photosynthesis and diel metabolism of Lobelia dortmanna L. during the spring bloom in a Danish lake. Aquat. Bot. 20: 109–119.Google Scholar
  113. Schlott, G. & G. Malicky, 1984. Biomasse und Phosphorgehalt der Makrophyten in der NO-Bucht des Lunzer Unersees (Austria) in Abhängigkeit von nährstoffreichen Zuflussen und vom Sediment. Arch. Hydrobiol. 101: 265–277.Google Scholar
  114. Shaver, G. R. & J. M. Melillo, 1984. Nutrient budgets of marsh plants: Efficiency concepts and relations to availability. Ecology 65: 1491–1510.Google Scholar
  115. Smith, C. S., 1978. Phosphorus uptake by roots and shoots of Myriophyllum spicatum L. Ph. D. thesis, Univrsity of Wisconsin-Madison.Google Scholar
  116. Smith, C. S. & M. S. Adams, 1986. Phosphorus transfer from sediments by Myriophyllum spicatum. Limnol. Oceanogr. 31: 1312–1321.Google Scholar
  117. Smith, V. H. & M. Wallsten, 1986. Prediction of emergent and floating-leaved macrophyte cover in central Swedish lakes. Can. J. Fish. aquat. Sci. 43: 2519–2523.Google Scholar
  118. Solander, D., 1978. Experimental lake fertilization in the Kuokkel area, northern Sweden: Distribution, biomass and production of the submerged macrophytes. Verh. int. Ver. Limnol. 20: 869–874.Google Scholar
  119. Solander, D., 1983a. Emergent macrophytes in subarctic lakes in Sweden. Proc. Int. Symp. Aquat. Macrophytes, Nijmegen, 18–23 September, 1983: 215–219.Google Scholar
  120. Solander, D., 1983b. Biomass, production and nutrient content of the macrophytes in a natural and a fertilized subarctic lake. Ph. D. thesis, Univ. of Uppsala, 91 pp.Google Scholar
  121. Solander, D., 1983c. Biomass and shoot production of Carex rostrata and Equisetum fluviatile in unfertilized and fertilized subarctic lakes. Aquat. Bot. 15: 34–366.Google Scholar
  122. Solski, A., 1962. Mineralization of aquatic vegetation. I. Liberation of phosphorus and potassium salts by leaching. Pol. Arch. Hydrobiol. 10: 167–196.Google Scholar
  123. Staaf, H., 1982. Plant nutrient changes in beech leaves during senescence as influenced by site characteristics. - Acta Oecologie/Oecol. Plant. 3: 161–170.Google Scholar
  124. Tessenow, U. & Y. Baynes, 1978. Experimental effects of Isoëtes lacustris L. on the distribution of Eh, pH, Fe and Mn in lake sediment. Verh. int. Ver. Limnol. 20: 2358–2362.Google Scholar
  125. Twilley, R. R., M. M. Brinson & G. J. Davies, 1977. Phosphorus absorption, translocation, and secretion in Nuphar luteum. Limnol. Oceanogr. 22: 1022–1032.Google Scholar
  126. Twilley, R. R., G. Ejdung, P. Romare & W. M. Kemp, 1986. A comparative study of decomposition, oxygen consumption and nutrient release for selected aquatic plants occurring in an estuarine environment. Oikos 47: 190–198.Google Scholar
  127. Ulehlova, B., 1978. Decomposition processes in the fishpond littoral. In D. Dykyjova & K. Kvet (eds), Pond littoral ecosystems. Springer-Verlag, Berlin: 341–353.Google Scholar
  128. Ulehlova, B. & S. Pribil, 1978. Water chemistry in the fishpond littorals. In D. Dykyjova & J. Kvet (eds), Pond littoral ecosystems. Springer-Verlag, Berlin: 126–140.Google Scholar
  129. Ulrich, K. E. & T. M. Burton, 1985. The effects of nitrate, phosphate and potassium fertilization on growth and nutrient uptake patterns of Phragmites australis (Cav.) Trin. ex Steudel. Aquat. Bot. 21: 53–62.Google Scholar
  130. Waisel, Y. & Z. Shapira, 1971. Functions performed by roots of some submerged hydrophytes. Israel J. Bot. 20: 69–77.Google Scholar
  131. Wallsten, M., 1981. Changes in lakes in Uppland, central Sweden, during 40 years. Symb. Bot. Upsal. XXIII: 3, 84 pp.Google Scholar
  132. van Aswegen, I. S., J. H. Swanepoel & H. J. Schoonbee, 1981. Adsorption by Chlorella vulgaris Beijer. of phosphorus compounds released by the submersed macrophyte Potamogeton pectinatus L. Water SA 7: 76–79.Google Scholar
  133. van der Linden, M. J. H. A., 1980. Nitrogen economy of reed vegetation in the Zuidelijk, Flevoland polder. I. — Distribution of nitrogen among shoots and rhizomes during the growing season and loss of nitrogen due to fire management. - Acta Oecologia Oecol. Plant. 1: 219–230.Google Scholar
  134. van der Linden, M. J. H. A., 1986. Phosphorus economy of reed vegetation in the Zuidelijk Flevoland polder (The Netherlands): seasonal distribution of phosphorus among shoots and rhizomes and availability of soil phosphorus. Acta Oecologie Oecol. Plant. 7: 397–405.Google Scholar
  135. Welch, E. B., M. A. Perkins, D. Lynch & P. Hufschmidt, 1979. Internal phosphorus related to rooted macrophytes in a shallow lake. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Center for Biotic System, Inst. Environmental Studies, Univ. Wisconsin, Madison: 81–99.Google Scholar
  136. Welsh, R. P. H. & P. Denny, 1979. The translocation of 32P in two submerged aquatic angiosperm species. New Phytol. 82: 645–656.Google Scholar
  137. Westlake, D. F., 1982. The primary production of water plants. In J. J. Symoens, S. S. Hooper & P. Compere (eds), Studies on Aquatic Vascular Plants, Royal Botanic Society of Belgium, Brussels: 165–180.Google Scholar
  138. Wetzel, R. G., 1975. Limnology. W. B. Saunders Company, 767 pp.Google Scholar
  139. Wile, I., G. Hitchin & G. Beggs, 1979. Impact of mechanical harvesting on Chemung lake. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Center for Biotic Systems, Inst. Environmental Studies, Univ. Wisconsin, Madison, 145–159.Google Scholar
  140. Wium-Andersen, S. & J. M. Andersen, 1972. The influence of vegetation on the redox profile of the sediment of Grane Langsö, a Danish Lobelia lake. Limnol. Oceanogr. 17: 948–952.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Wilhelm Granéli
    • 1
  • Doris Solander
    • 2
  1. 1.Department of LimnologyLundSweden
  2. 2.Institute of LimnologyUppsalaSweden

Personalised recommendations