Hydrobiologia

, Volume 170, Issue 1, pp 229–244 | Cite as

Exchange of phosphorus across the sediment-water interface

  • Bengt Boström
  • Jens M. Andersen
  • Siegfried Fleischer
  • Mats Jansson
Article

Abstract

In this article, principles of phosphorus retention and phosphorus release at the sediment-water interface in lakes are reviewed. New results and hypotheses are discussed in relation to older models of phosphorus exchange between sediments and water. The fractional composition of sedimentary phosphorus is discussed as a tool for interpretation of different retention mechanisms. Special emphasis is given to the impact of biological, particularly microbial, processes on phosphorus exchange across the sediment-water interface and to the significance of biologically induced CaCO3 precipitation to phosphorus retention in calcareous lakes.

Key words

phosphorus sediments retention release microbial processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahl, T., 1979. Natural and human effects on trophic evolution. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 269–277.Google Scholar
  2. Andersen, J. M., 1982. Effects of nitrate concentration in lake water on phosphate release from the sediment. Wat. Res. 16: 1119–1126.Google Scholar
  3. Baccini, P., 1985. Phosphate interactions at the sediment-water interface. In W. Stumm (ed), Chemical processes in lakes. Wiley-Interscience, New York: 189–205.Google Scholar
  4. Bannerman, R. T., D. E. Armstrong, R. F. Harris & G. C. Holdren, 1975. Phosphorus uptake and release by Lake Ontario sediments. Ecological Research Series. EPA 660/3–75–006.Google Scholar
  5. Barsdate, R. J., T. Fenchel & R. T. Prentki, 1974. Phosphorus cycle of model ecysystems: significance for decomposer food chains and effect of bacterial grazers. Oikos 25: 239–251.Google Scholar
  6. Boström, B., 1984. Potential mobility of phosphorus in different types of lake sediment. Int. Revue ges. Hydrobiol. 69: 457–474.Google Scholar
  7. Boström, B., 1986. The role of Microcystis colonies, its mucilage and associated bacteria, for nutrient fluxes from sediments to lake water — A working hypothesis. In M. Enell, W. Graneli & L.-A. Hansson (eds), 13th Nordic Symposium on Sediments, ISSN 0348–0798: pp. 6–8.Google Scholar
  8. Boström, B., 1988. Relations between chemistry, microbial biomass and activity in sediments of a polluted vs a nonpolluted eutrophic lake. Verh. int. Ver. Limnol. 23: 451–459.Google Scholar
  9. Boström, B., I. Ahlgren & C. Bell, 1985. Internal loading in a eutrophic lake, reflected in seasonal variations of some sediment parameters. Verh. int. Ver. Limnol. 22: 3335–3339.Google Scholar
  10. Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.Google Scholar
  11. Boström, B., G. Persson & B. Broberg, 1988. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170: 133–155.Google Scholar
  12. Boström, B. & K. Pettersson, 1982. Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 92: 415–429.Google Scholar
  13. Carignan, R., 1982. An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes. Can. J. Fish. aquat. Sci. 39: 243–247.Google Scholar
  14. Carignan, R. & J. Kalff, 1992. Phosphorus release by submerged macrophytes: Significance to epiphyton and phytoplankton. Limnol. Oceanogr. 27: 419–427.Google Scholar
  15. Cmiech, H. A., 1981. Ultrastructural changes in freshwater populations of planktonic Cyanophyceae during cell differentiation and development. Ph. D. thesis. University of Leeds, UK 163 pp.Google Scholar
  16. Davis, R. B., D. L. Thurlow & F. E. Brewster, 1975. Effects of burrowing tubificid worms on the exchange of phosphorus between lake sediment and overlying water. Verh. int. Ver. Limnol. 19: 382–394.Google Scholar
  17. Dobolyi, E. & S. Herodek, 1980. On the mechanism reducing the phosphate concentration in the water of Lake Balaton. Int. Revue ges. Hydrobiol. 65: 339–343.Google Scholar
  18. Einsele, W., 1936. Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686.Google Scholar
  19. Einsele, W., 1938. Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch. Hydrobiol. 33: 361–387.Google Scholar
  20. Fenchel, T. & T. H. Blackburn, 1979. Bacteria and mineral cycling. Academic Press, London, 225 pp.Google Scholar
  21. Fleischer, S., 1983. Microbial phosphorus release during enhanced glycolysis. Naturwissenschaften 70: 415.Google Scholar
  22. Fleischer, S., 1985. Microbial mediation of phosphorus exchange at the sediment-water interface. In. M. Enell, W. Graneli & L.-A. Hansson (eds), 13th Nordic Symposium on Sediments, ISSN 0348–0798: pp 9–16.Google Scholar
  23. Fleischer, S., 1986. Aerobic uptake of Fe(III)-precipitated phosphorus by microorganisms. Arch. Hydrobiol. 197: 267–277.Google Scholar
  24. Florentz, M., P. Granger & P. Hartemann, 1984. Use of 31P nuclear magnetic resonance and electron microscopy to study phosphorus metabolism of microorganisms from waste-water. Appl. Envir. Microbiol. 47: 519–525.Google Scholar
  25. Forsberg, C., 1985. Lake recovery in Sweden. European Water Pollution Control Association, International congress: Lakes pollution and recovery, Rome 1985. Preprints: 272–281.Google Scholar
  26. Gächter, R. & A. Mares, 1985. Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes. Limnol. Oceanogr. 30: 364–371.Google Scholar
  27. Golterman, H. L., 1975. Physiological Limnology. Elsevier Sci. Publ. Co. Amsterdam. 489 pp.Google Scholar
  28. Golterman, H. L., 1984. Sediments, modifying and equilibrating factors in the chemistry of freshwater. Verh. int. Ver. Limnol. 22: 23–59.Google Scholar
  29. Golterman, H. L., A. B. Viner & G. F. Lee, 1977. Preface. In H. L. Golterman (ed), Interactions between sediments and freshwater. Dr. W. Junk B. V. Publ., The Hague: 1–9.Google Scholar
  30. Gunatilaka, A., 1982. Phosphate adsorption kinetics of resuspended sediments in a shallow lake, Neusiedlersee, Austria. Hydrobiologia 91: 293–298.Google Scholar
  31. Håkansson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer-Verlag, Berlin, 316 pp.Google Scholar
  32. Iwema, A. & A. Meunier, 1985. Influence of nitrate on acetic acid induced biological phosphate removal. Wat. Sci. Tech. 17: 289–294.Google Scholar
  33. Jansson, M., 1986. Nitrate as a catalyst for phosphorus mobilization in sediments. In P. G. Sly (ed) Sediments and water interactions. Springer-Verlag, NY pp. 387–391.Google Scholar
  34. Jansson, M., 1987. Anaerobic dissolution of iron-phosphorus complexes in sediment due to the activity of nitrate reducing bacteria. Microb. Ecol. 14: 81–89.Google Scholar
  35. Jensen, T. E., 1968. Electron microscopy of polyphosphate bodies in a blue-green alga, Nostoc pruniforme. Arch. Microbiol. 62: 144–152.Google Scholar
  36. Jensen, T. E., 1969. Fine structure of developing polyphosphate bodies in a blue-green alga, Plectonema boryanum. Arch. Microbiol. 67: 328–338.Google Scholar
  37. Jewell, W. J. & P. L. McCarty, 1968. Aerobic decomposition of algae and nutrient regeneration. Stanford Univ. (USA) Tech. Rep. 91.Google Scholar
  38. Jones, B. F. & C. J. Bowser, 1978. The mineralogy and related chemistry of lake sediments. In A. Lerman (ed), Lakes — chemistry, geology, physics. Springer-Verlag, New York, pp. 179–235.Google Scholar
  39. Jones, J. G., S. Gardener & B. M. Simon, 1983. Bacterial reduction of ferric iron in a stratified eutrophic lake. J. gen. Microbiol. 129: 131–139.Google Scholar
  40. Koschel, R., J. Benndorf, G. Proft & F. Recknagel, 1983. Calcite precipitation as a natural control mechanism of eutrophication. Arch. Hydrobiol. 98: 380–408.Google Scholar
  41. Lee, G. F., R. A. Jones & W. Rast, 1980. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies. In R. C. Loehr, C. S. Martin & W. Rast (eds), Phosphorus management strategies for lakes, Ann Arbor Sci., Ann Arbor, pp 259–308.Google Scholar
  42. Lijklema, L., 1977. The role of iron in the exchange of phosphate between water and sediments. In H. L. Golterman (ed), Interactions between sediments and freshwater, Dr W. Junk B. V. Publ., The Hague: 313–317.Google Scholar
  43. Logan, T. J., 1982. Mechanisms for release of sediment-bound phosphate to water and the effects of agricultural land management on fluvial transport of particulate and dissolved phosphate. Hydrobiologia 92: 519–530.Google Scholar
  44. Marais, G. V. R., R. E. Loewenthal & I. P., Siebritz, 1983. Observations supporting phosphate removal by biological excess uptake — a review. Wat. Sci. Tech. 15: 15–41.Google Scholar
  45. Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. I. J. Ecol. 29: 280–329.Google Scholar
  46. Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. II. J. Ecol. 30: 147–201.Google Scholar
  47. Murphy, T. P., K. J. Hall & I. Yesake, 1983. Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnol. Oceanogr. 28: 58–69.Google Scholar
  48. Ohle, W., 1958. Die Stoffwechseldynamik der Seen in Abhängigkeit von der Gasausscheidung ihres Schlammes. Vom Wasser 25: 127–149.Google Scholar
  49. Osborn, D. W. & H. A. Nicholls, 1978. Optimisation of the activated sludge process for the biological removal of phosphorus. Prog. Wat. Tech. 10: 261–277.Google Scholar
  50. Otsuki, A. & R. G. Wetzel, 1972. Coprecipitation of phosphate with carbonates in a marl lake. Limnol. Oceanogr. 17: 763–767.Google Scholar
  51. Pettersson, K., 1986. The fractional composition of sedimentary phosphorus in Swedish lake sediments of different characteristics. In P. G. Sly (ed) Sediments and water interactions. Springer-Verlag NY: 149–155.Google Scholar
  52. Pettersson, K., B. Boström & O.-S. Jacobsen, 1988. Phosphorus in sediments — speciation and analysis. Hydrobiologia 170: 91–101.Google Scholar
  53. Pettersson, K. & V. Istvanovics, 1988. Sediment phosphorus in Lake Balaton — forms and mobility. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 25–41.Google Scholar
  54. Petr, T., 1977. Bioturbation and exchange of chemicals in the mud-water interface. In H. L. Golterman (ed), Interactions between sediments and freshwater. Dr W. Junk B. V. Publ., The Hague, pp. 216–266.Google Scholar
  55. Preston, T., W. D. P. Stewart & C. S. Reynolds, 1980. Bloomforming cyanobacterium Microcystis aeruginosa overwinters on sediment surface. Nature 288: 365–367.Google Scholar
  56. Provini, A. & G. Premazzi, 1985. The role of internal loadings. European Water Pollution Control Association. International congress: Lakes pollution and recovery, Rome 1985. Preprints: 71–82.Google Scholar
  57. Psenner, R. & R. Pucsko, 1988. Phosphorus fractionation: limits and correlations. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 43–59.Google Scholar
  58. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.Google Scholar
  59. Riber, H. H., 1984. Phosphorus uptake from water by the macrophyte-epiphyte complex in a Danish lake: Relationship to plankton. Verh. int. Ver. Limnol. 22: 790–794.Google Scholar
  60. Rodhe, W., 1948. Environmental requirements of freshwater plankton. Symb. Bot. Ups. 10, 149 pp.Google Scholar
  61. Ryding, S.-O. & C. Forsberg, 1977. Sediments as a nutrient source in shallow polluted lakes. In H. L. Golterman (ed), Interactions between sediments and freshwater. Dr. W. Junk B. V. Publ., The Hague, pp. 227–234.Google Scholar
  62. Shapiro, J., 1967. Induced rapid release and uptake of phosphate by microorganisms. Science 155: 1269–1271.Google Scholar
  63. Sonzogni, W. C., S. C. Chapra, D. E. Armstrong & T. J. Logan, 1982. Bioavailability of phosphorus inputs to lakes. J. Environ. Qual. 11: 555–563.Google Scholar
  64. Sörensen, J., 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Envir. Microbiol. 43: 319–324.Google Scholar
  65. Stauffer, R. E., 1985. Relationships between phosphorus loading and trophic state in calcareous lakes of southeast Wisconsin. Limnol. Oceanogr. 30: 123–145.Google Scholar
  66. Stumm, W. & J. O. Leckie, 1971. Phosphate exchange with sediments; its role in the productivity of surface waters. Eidgen. Techn. Hochschulen, Separatum Nr. 406. Dübendorf, Schweiz.Google Scholar
  67. Tiren, T. & K. Pettersson, 1985. The influence of nitrate on the phosphorus flux to and from oxygen depleted lake sediments. Hydrobiologia 120: 207–223.Google Scholar
  68. Uehlinger, V., 1986. Bacteria and phosphorus regeneration in lakes. An experimental study. Hydrobiologia 135: 197–206.Google Scholar
  69. Ulen, B., 1978. Seston and sediment in Lake Norrviken. III. Nutrient release from sediment. Schweiz. Z. Hydrol. 40: 287–305.Google Scholar
  70. Vollenweider, R. A., 1986. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus. Organisation for economic cooperation and development (OECD) report DAS/CSI/68.27, Paris, 192 pp.Google Scholar
  71. Wentzel, M. C., L. H. Lötter, R. E. Loewenthal & G. v.R. Marais, 1986. Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal — a biochemical model. Water SA 12: 209–224.Google Scholar
  72. Williams, J. D. H., J. -M. Jaquet & R. L. Thomas, 1976. Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish. Res. Board Can. 33: 413–429.Google Scholar
  73. Williams, J. D. H. & T. Mayer, 1972. Effects of sediment diagenesis and regeneration of phosphorus with special reference to lakes Eire and Ontario, In H. E. Allen & J. R. Kramer (eds), Nutrients in natural waters. J. Wiley & Sons, NY: 281–315.Google Scholar
  74. Young, T. C. & W. G. Comstock, 1986. Direct effects and interactions involving iron and humic acid during formation of colloidal phosphorus. In P. G. Sly (ed) Sediments and water interactions. Springer-Verlag NY: 461–470.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Bengt Boström
    • 1
  • Jens M. Andersen
    • 2
  • Siegfried Fleischer
    • 3
  • Mats Jansson
    • 1
  1. 1.Department of LimnologyUppsala UniversityUppsalaSweden
  2. 2.Århus amtskommmune, VandvaesenetHöjbjergDenmark
  3. 3.Department of LimnologyLund UniversityLundSweden

Personalised recommendations