Advertisement

Hydrobiologia

, Volume 282, Issue 1, pp 197–217 | Cite as

Composition, distribution and biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands)

  • N. Smol
  • K. A. Willems
  • J. C. R. Govaere
  • A. J. J. Sandee
Article

Abstract

Meiofauna composition, abundance, biomass, distribution and diversity were investigated for 31 stations in summer. The sampling covered the whole Oosterschelde and comparisons between the subtidal — intertidal and between the western-central — eastern compartment were made.

Meiofauna had a community density ranging between 200 and 17 500 ind 10 cm−2, corresponding to a dry weight of 0.2 and 8.4 gm−2. Abundance ranged between 130 and 17 200 ind 10 cm−2 for nematodes and between 10 and 1600 ind 10 cm−2 for copepods. Dry weight biomass of these taxa was between 0.5–7.0 gm−2 and 0.008–0.3 gm−2 for nematodes and copepods respectively.

The meiofauna was strongly dominated by the nematodes (36–99%), who's abundance, biomass and diversity were significantly higher intertidally than subtidally and significantly higher in the eastern part than in the western part. High numbers were positively correlated with the percentage silt and negatively with the median grain size of the sand fraction. The abundance and diversity of the copepods were highest in the subtidal, but their biomass showed an inverse trend being highest on the tidal flats.

The taxa diversity of the meiofauna community and species diversity of both the nematodes and the copepods were higher in subtidal stations than on tidal flats. In the subtidal, the meiofauna and copepod diversity decreased from west to east, whereas nematode diversity increased.

The vertical profile clearly reflected the sediment characteristics and could be explained by local hydrodynamic conditions.

Seasonal variation was pronounced for the different taxa with peak abundance in spring, summer or autumn and minimum abundance in winter.

Changes in tidal amplitude and current velocity enhanced by the storm-surge barrier will alter the meiofauna community structure. As a result meiofauna will become more important in terms of density and biomass, mainly due to increasing numbers of nematodes, increasing bioturbation, nutrient mineralisation and sustaining bacterial growth. A general decrease in meiofauna diversity is predicted. The number of copepods is expected to decrease and interstitial species will be replaced by epibenthic species, the latter being more important in terms of biomass and as food for the epibenthic macrofauna and fishes.

Key words

meiofauna distribution biomass seasonal variation Oosterschelde estuary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alatalo, R. V., 1981. Problems in the measurement of evenness in Ecology. Oikos 37: 199–204.Google Scholar
  2. Ansari, A. A., A. H. Parulekar & T. G. Jagtap, 1980. Distribution of sublittoral meiobenthos off Goa Coast, India. Hydrobiologia 74: 209–214.Google Scholar
  3. Arlt, G. & M. A. H. Saad, 1977. Investigations on the meiofauna and sediment of the Shatt Al-Arab near Basrah (Iraq). Freshwat. Biol. 7: 487–494.Google Scholar
  4. Austen, M. C. & R. M. Warwick; 1989. Comparison of univariate and multivariate Aspects of estuarine meiobenthic community Structure. Estuar. coast. Shelf Sci. 29: 23–42.Google Scholar
  5. Baird, D. & H. Milne, 1981. Energy flow in the Ythan estuary, Aberdeenshire, Scotland. Estuar. coast. Shelf Sci. 13: 455–472.Google Scholar
  6. Barnett, P. R. O., 1968. Distribution and ecology of harpacticoid copepods of an intertidal mudflat. Int. Revue ges. Hydrobiol. 53: 177–209.Google Scholar
  7. Bodin, Ph., 1984. Densité de la méiofaune et peuplements de copépodes harpacticoïdes en baie de Douarnenez (Finistère). Ann. Inst. océanogr. 60: 5–17.Google Scholar
  8. Boucher, G., 1980. Facteurs d'équilibre d'un peuplement de nématodes des sables fins sublittoraux. Mém. Mus. natn. Hist. nat. 114: 1–81.Google Scholar
  9. Bouwman, L. A., 1981. A survey of nematodes from the Ems estuary. Part I. Systematics. Zool. Jb. Syst. 108: 335–385.Google Scholar
  10. Bouwman, L. A., 1983. A survey of nematodes from the Ems estuary. Part II. Species assemblages and associations. Zool. Jb. Syst. 110: 345–376.Google Scholar
  11. Bowen, R. A., J. M. Onge, J. B. Colton & C. A. Price, 1972. Density-gradient centrifugation as an aid to sorting planktonic organisms I. gradient materials. Mar. Biol. 14: 242–247.Google Scholar
  12. Buchanan, J. B. & J. M. Kain, 1971. Measurements of the physical and chemical environment. In N. A. Holme & A. D. McIntyre (eds), Methods for the study of marine Benthos, IBP-handbook nr. 16; Blackwell Oxford: 30–58.Google Scholar
  13. Capstick, C. K., 1959. The distribution of free-living nematodes in relation to salinity in the middle and upper reaches of the River Blyth estuary. J. anim. Ecol. 28: 189–210.Google Scholar
  14. Coull, B. C. & J. B. J. Wells, 1981. Density of mud-dwelling meiobenthos from the sites in the Wellington region. N.Z. J. Mar. Freshw. Res. 15: 411–415.Google Scholar
  15. Cullen, D. J. 1973. Bioturbation of superficial marine sediments by interstitial meiobenthos. Nature 242: 323–324.Google Scholar
  16. Duursma E. K., H. Engel & TH. J. H. Martens, 1982. De Nederlandse Delta. Natuur & Techniek: 1–511.Google Scholar
  17. Dye, A. H., 1983. Vertikal and horizontal distribution of meiofauna in mangrove sediments in Transkei, Southern Africa. Estuar. coast. Shelf Sci. 16: 591–598.Google Scholar
  18. Dye, A. H. & J. P. Furstenberg, 1978. An ecophysiological study of the meiofauna of the Swartkops estuary. 2. The meiofauna: composition, distribution, seasonal fluctuation and biomass. Zool. Afr. 13: 19–32.Google Scholar
  19. Ellison, R. L., 1984. Foraminifera and meiofauna in an intertidal mudflat, Cornwall, England: populations, respiration and secundary production and energy budget. Hydrobiologia 109: 131–148.Google Scholar
  20. Farris, R. A. & H. Crezee, 1976. An improved Reineck box for sampling coarse sand. Int. Revue ges. Hydrobiol. 66: 703–705.Google Scholar
  21. Faubel, A., 1982. Determination of individual meiofauna dry weight values in relation to definite size classes. Cah. Biol. Mar. 23: 339–345.Google Scholar
  22. Faubel, A., E. Hartwig & H. Thiel, 1983. On the ecology of the benthos of sublittoral sediments, Fladen Ground, North Sea. I. Meiofauna standing stock and estimation of production. ‘Meteor’ Forsch.-Ergebnisse 36: 35–48.Google Scholar
  23. Gee, J. M., 1987. Impact of epibenthic predation on estuarine intertidal harpacticoid copepod populations. Mar. Biol. 96: 497–510.Google Scholar
  24. Gee, J. M., 1989. An ecological and economic review of meiofauna as food for fish. Zool. J. Linn. Soc. 96: 243–261.Google Scholar
  25. Gerlach, S. A., 1953. Die biozönotische Gliederung der Nematodenfauna am der Deutschen Kusten. Z. morph. Ökol. Tiere 41: 411–512.Google Scholar
  26. Gerlach, S. A., 1978. Food chain relationships in subtidal silty sand, marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33: 55–69.Google Scholar
  27. Heip, C., 1974. A new index measuring evenness. J. mar. biol. Ass. U.K. 54: 555–557.Google Scholar
  28. Heip, C., R. Herman & M. Vincx, 1984. Variability and productivity of meiobenthos in the Southern Bight of the North Sea. Rapp. P.-v. Réun. Cons. int. Explor. Mer 1983: 51–56.Google Scholar
  29. Heip, C., R. Herman, G. Bisschop, J. C. R. Govaere, M. Holvoet, D. Van Damme, C. Vanosmael, K. A. Willems & L. De Coninck, 1979. Benthic studies of the Southern Bight of the North Sea and its adjacent continental estuarues. Progress Report I. International Report. International Council of the exploration of the Sea. C.M. 1979/L:9 Biological and Oceanography Committtee: 1–30.Google Scholar
  30. Heip, C. & N. Smol, 1976. The influence of temperature on the Reproductive Potential of two brackish-water Harpacticoids (Crustacea: Copepoda). Mar. Biol. 35: 327–334.Google Scholar
  31. Heip, C., K. A. Willems & A. Goossens, 1977. Vertical distribution of meiofauna and the efficiency of the Van Veen grab on sandy bottoms in Lake Grevelingen (the Netherlands). Hydrobiol. Bull. 11: 35–45.Google Scholar
  32. Herman, R., L. K. H. Thielemans & C. Heip, 1984. Benthic studies of the Southern Bight of the North Sea. VIII. Evolution of the meiofauna in the belgian coastal waters from 1977 till 1983. Geconcerteerde Onderzoeksacties Oceanografie: progress report 1983: 1–19.Google Scholar
  33. Hicks, G. R. F. & B. C. Coull, 1983. The ecology of marine meiobenthic harpacticoid copepods. Oceanogr. Mar. Biol. annu. Rev. 21: 67–175.Google Scholar
  34. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.Google Scholar
  35. Hodda, M. & W. L. Nicholas, 1985. Meiofauna associated with Mangroves in the Hunter River Estuary and Fullerton Cove Southeastern Australia. Aust. J. mar. Freshwat. Res. 36: 41–50.Google Scholar
  36. Hodda, M. & W. L. Nicholas, 1986a. Temporal changes in littoral Meiofauna from the Hunter River Estuary. Austr. J. mar. Freshwat. Res. 37: 729–741.Google Scholar
  37. Hodda, M. & W. L. Nicholas, 1986b. Nematode diversity and industrial pollution in the Hunter River Estuary, NSW, Australia. Mar. Pollut. Bull. 17: 251–255.Google Scholar
  38. Hostens, K. & O. Hamerlynck, 1994. The mobile epifauna of the soft bottoms in the subtidal Oosterschelde estuary: structure, function and impact of the storm-surge barrier; Hydrobiologia 282/283: 479–496.Google Scholar
  39. Jansson, B. O., 1966. Microdistribution of factors and fauna in marine sandy beaches. Veröff. Inst. Meeresforsch. Bremerh. 2: 77–56.Google Scholar
  40. Little, C., 1986. Fluctuations in the meiofauna of the Aufwuchs community in a brackish-water lagoon. Estuar. coast. Shelf Sci. 23: 263–276.Google Scholar
  41. Martens, P. M. & E. R. Schockaert, 1981. Sand-dwelling Turbellaria from the Netherlands Delta Area. Hydrobiologia 84: 113–127.Google Scholar
  42. McIntyre, A. D., 1969. Ecology of marine meiobenthos. Biol. Rev. 44: 245–290.Google Scholar
  43. McIntyre, A. D. & D. J. Murison, 1973. The meiofauna of a flatfish nursery ground. J. mar. biol. Ass. U.K. 53: 93–118.Google Scholar
  44. McLachlan, A., 1977. Studies on the psammolittoral meiofauna of Algao Bay, South Africa. II. The distribution, composition and biomass of the meiofauna and macrofauna. Zool. Afr. 12: 33–60.Google Scholar
  45. Nienhuis, P. H. & A. C. Smaal, 1994. The Oosterschelde estuary, a case study of a changing ecosystem: an introduction. Hydrobiologia 282/283: 1–14.Google Scholar
  46. Nuss, B. 1984. Ultrastrukturelle und ökophysiologische untersuchungen an kristalloiden einschlüssen der muskeln eines sulfidtoleranten limnischen Nematoden (Tobrilus gracilis). Veröff. Inst. Meeresforsch. Bremerh. 20: 3–15.Google Scholar
  47. Pihl, L., 1985. Food selection and consumption of mobile epibenthic fauna in shallow marine areas. Mar. Ecol. Progr. Ser. 22: 169–179.Google Scholar
  48. Platt, H. M. & R. M. Warwick, 1980. The significance of freeliving nematodes to the littoral ecosystem. In: J. H. Price, D. E. G. Irvine & W. F. Farnham, (eds) The Shore Environment 2. Ecosystems. New York, Academic Press: 729–759.Google Scholar
  49. Raffaelli, D. & F. Mason, 1981. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar. Pollut. Bull. 12: 158–163.Google Scholar
  50. Reise, K., 1983. Experimental removal of lugworms from marine sand affects small zoobenthos. Mar. Biol. 74: 327–332.Google Scholar
  51. Riemann, F., 1966. Die interstitielle Fauna im Elbe-aestuar. Verbreitung und Systematik. Arch. Hydrobiol., Supp. 31: 1–279.Google Scholar
  52. Saad, M. A. H. & G. Arlt, 1977. Studies on the bottom deposits and the meiofauna of Shatt-al Arab and the arabian Gulf. Cah. Biol. mar. 18: 71–84.Google Scholar
  53. Sherer, B. & K. Reise, 1981. Significant predation on micro-and meiofauna by the crab Carcinus maenas L. in the Wadden Sea. Kieler Meeresforsch. 5: 490–500.Google Scholar
  54. Skoolmun, P. & S. A. Gerlach, 1971. Jahreszeitliche Fluktuationen der Nematodenfauna im Gezeitenbereich des Weser-aestuar. Veröff. Inst. Meeresforsch. Bremerh. 13: 119–138.Google Scholar
  55. Schmidt, P., 1978. Die quantitative Verteilung und Populationsdynamik des Mesopsammons am Gezeiten-Sandstrand der Nordseeinsel Sylt. I. Faktorengefüge und biologisch Gliederung des Lebensraumes. Int. Revue ges. Hydrobiol. 53: 723–779.Google Scholar
  56. Smol N., 1986. Rol van het meiobenthos in de Oosterschelde. Balans report, Delta Institute for hydrobiological Research: 1–151 (in Dutch).Google Scholar
  57. Teal, J. M. & W. Wieser, 1966. The distribution and ecology of nematodes in a Georgia salt marsh. Limnol. Oceanogr. 11: 217–222.Google Scholar
  58. Tietjen, J. H., 1969. The ecology of shallow water meiofauna in two New England estuaries. Oecologia 2: 251–291.Google Scholar
  59. Van Damme, D., C. Heip & K. A. Willems. Influence of pollution on the harpacticoid copepods of two North Sea estuaries. Hydrobiologia 112: 143–160.Google Scholar
  60. Van Damme, D., R. Herman, Y. Sharma, M. Holvoet & P. Martens, 1980. Fluctuations of the meiobenthos communities in the Westerschelde estuary. Ices-report CM/L 23: 131–170.Google Scholar
  61. Van Es F. B., M. A. van Arkel, L. A. Bouwman, H. G. J. Schröder, 1980. Influence of organic pollution on bacterial, macrobenthic and meiobenthic populations in intertidal flats of the Dollard. Neth. J. Sea Res. 14: 288–304.Google Scholar
  62. Warwick, R. M., 1971. Nematode associations in the Exe estuary. J. mar. biol. ass. U.K. 51: 439–454.Google Scholar
  63. Warwick, R. M. & J. M. Gee, 1984. Community structure of estuarine meiobenthos. Mar. Ecol. Progr. Ser. 43: 213–219.Google Scholar
  64. Warwick, R. M. & R. Price, 1979. Ecological and metabolic studies on free-living nematodes from an estuarine mudflat. Estuar. coast. mar. Sci. 9: 259–271.Google Scholar
  65. Willems, K. A., 1989. Verspreiding, ecologie en gemeenschapsstructuur van benthische copepoden in het Delta gebied en de Eems-Dollard (Nederland). Ph.D.-thesis, State University Gent: 1–440.Google Scholar
  66. Willems, K. A. & A. J. J. Sandee, 1978. Working group carbon cycle in the Grevelingen. The role of meiozoobenthos in the carbon cycle. In: E. K. Duursma (ed.), Progress Report 1977. Delta Insitute for Hydrobiological Research, Yerseke. Verh. kon. Ned. Akad. Wetensch. Natuurkunde 2: 28–30.Google Scholar
  67. Willems, K. A. & A. J. J. Sandee, 1979. Working group carbon cycle in the Grevelingen. Zoobenthos investigations. Meiozoobenthos: density and biomass. In: E. K. Duursma (ed.), Progress Report 1978. Delta Institute for Hydrobiological Research, Yerseke. Verh. Kon. Ned. Akad. Wetensch. Natuurkunde 2: 168–170.Google Scholar
  68. Willems, K. A., Y. Sharma, C. Heip & A. J. J. Sandee, 1984. Long-term evolution of the meiofauna at a sandy station in lake Grevelingen, the Netherlands. Neth. J. Sea Res. 18: 418–433.Google Scholar
  69. Witte, J. IJ. & J. J. Zijlstra, 1984. The meiofauna of a tidal flat in the western part of the Wadden Sea and its role in the benthic ecosystem. Mar. Ecol. Prog. Ser. 14: 129–138.Google Scholar
  70. Wolff, W. J., 1973. The estuary as a habitat. An analysis of data on the soft bottom macrofauna of the estuarine area of the rivers Rhine, Meuse and Scheldt.Zool. Verh. 126: 1–242.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • N. Smol
    • 1
  • K. A. Willems
    • 1
    • 3
  • J. C. R. Govaere
    • 2
  • A. J. J. Sandee
    • 3
  1. 1.Marine Biology SectionState University of GhentGentBelgium
  2. 2.Koninklijk Belgisch Instituut voor NatuurwetenschappenBrusselBelgium
  3. 3.Netherlands Institute of EcologyYersekeThe Netherlands

Personalised recommendations