, Volume 300, Issue 1, pp 17–42 | Cite as

Spatial heterogeneity as a multiscale characteristic of zooplankton community

  • P. Pinel-Alloul
Invited Lecture


Zooplankton spatial heterogeneity has profound effects on understanding and modelling of zooplankton population dynamics and interactions with other planktonic compartments, and consequently, on the structure and function of planktonic ecosystems. On the one hand, zooplankton heterogeneity at spatial and temporal scales of ecological interest is an important focus of aquatic ecology research because of its implications in models of productivity, herbivory, nutrient cycling and trophic interactions in planktonic ecosystems. On the other hand, estimating zooplankton spatial variation at the scale of an ecosystem, is a powerful tool to achieve accurate sampling design. This review concentrates on the spatial heterogeneity of marine and freshwater zooplankton with respect to scale. First to be examined are the concept of spatial heterogeneity, the sampling and statistical methods used to estimate zooplankton heterogeneity, and the scales at which marine and freshwater zooplankton heterogeneity occurs. Then, the most important abiotic and biotic processes driving zooplankton heterogeneity over a range of spatial scales are presented and illustrated by studies conducted over large and fine scales in both oceans and lakes. Coupling between abiotic and biotic processes is finally discussed in the context of the ‘multiple driving forces hypothesis’.

Studies of zooplankton spatial heterogeneity refer both to the quantification of the degree of heterogeneity (‘measured heterogeneity’) and to the estimation of the heterogeneity resulting from the interactions between the organisms and their environment (‘functional heterogeneity’) (Kolasa & Rollo, 1991). To resolve the problem of measuring zooplankton patchiness on a wide range of spatial scales, advanced technologies (acoustic devices, the Optical Plankton Counter (OPC), and video systems) have been developed and tested in marine and freshwater ecosystems. A comparison of their potential applications and limitations is presented. Furthermore, many statistical tools have been developed to estimate the degree of ‘measured heterogeneity’; the three types most commonly used are indices of spatial aggregation, variance: mean ratio, and spatial analysis methods. The variance partitioning method proposed by Borcard et al. (1992) is presented as a promising tool to assess zooplankton ‘functional heterogeneity’.

Nested patchiness is a common feature of zooplankton communities and spatial heterogeneity occurs on a hierarchical continuum of scales in both marine and freshwater environments. Zooplankton patchiness is the product of many physical processes interacting with many biological processes. In marine systems, patterns of zooplankton patchiness at mega- to macro-scales are mostly linked to large advective vectorial processes whereas at coarse-, fine- and micro-scales, physical turbulence and migratory, reproductive and swarm behaviors act together to structure zooplankton distribution patterns. In freshwater environments, physical advective forces related to currents of various energy levels, and vertical stratification of lake interact with biological processes, especially with vertical migration, to structure zooplankton community over large to fine- and micro-scales. Henceforth, the zooplankton community must be perceived as a spatially well-structured and dynamic system that requires a combination of both abiotic and biotic explanatory factors for a better comprehension and more realistic and reliable predictions of its ecology.

Key words

marine and freshwater zooplankton spatial heterogeneity scaling multiple abiotic and biotic generative processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge, A. L., 1982. Aggregation of spawning appendicularians in surface windrows. Bull. mar. Sci. 32: 250–254.Google Scholar
  2. Allen, T. F. H. & T. B. Starr, 1982. Hierarchy — perspectives for ecological complexity. Univ. Chicago Press, Chicago.Google Scholar
  3. Allen, T. F. H. & T. W. Hoekstra, 1991. Role of heterogeneity in scaling of ecological systems under analysis. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag, New York. 3: 47–68.Google Scholar
  4. Amanieu, M., P. Legendre, M. Trousselier & G. F. Frisoni, 1989. Le programme Ecothau: Théorie écologique et base de la modélisation. Oceanolog. Acta 12: 189–199.Google Scholar
  5. Anderson, R. M., D. M. Gordon, M. J. Crawley & M. P. Hassell, 1982. Variability in the abundance of animal and plant species. Nature (Lond.) 296: 245–248.Google Scholar
  6. Arditi, R., N. Perrin & H. Saiah, 1991. Functional responses and heterogeneities: an experimental test with cladocerans. Oikos 60: 69–75.Google Scholar
  7. Barry, J. P. & P. K. Dayton. 1991. Physical heterogeneity and the organization of marine communities. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag, New York. 14: 270–320.Google Scholar
  8. Bergstrom, B. I., A. Gustavsson & J. O. Stromberg, 1992. Determination of abundance of gelatinous plankton with a remotely operated vehicle (ROV). Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 59–65.Google Scholar
  9. Berzins, B., 1958. Ein Planktologisches Querprofil. Rep. Ist. Freshwat. Res. Drottingholm 39: 5–22.Google Scholar
  10. Birge, E. A., 1897. Plankton studies on Lake Mendota. II. The crustacea of the plankton in July 1894–December 1896. Trans. Wis. Acad. Sci. Arts Lett. 11: 274–448.Google Scholar
  11. Bollens, S. M. & B. W. Frost, 1989. Zooplanktivorous fish and variable diel vertical mifration in the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 34: 1072–1083.Google Scholar
  12. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.Google Scholar
  13. Borcard, D. & P. Legendre, 1993. Environmental control and spatial structure in ecological communities, with an example on Oribatid mites (Acari, Oribatei). J. Envir. Stat. 1: 55–76.Google Scholar
  14. Buskey, E. J., 1984. Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Mar. Biol. 79: 165–175.Google Scholar
  15. Butorina, L. G., 1986. On the problem of aggregations of plankton crustaceans Polyphemus pediculus (L.). Cladocera. Arch. Hydrobiol. 105: 355–386.Google Scholar
  16. Byron, E. R., P. T. Whitman & C. R. Goldman, 1983. Observation on copepod swarms in Lake Tahoe. Limnol. Oceanogr. 28: 378–382.Google Scholar
  17. Carpenter, S. R., 1988. Complex interactions in lake communities. Springer-Verlag. New York, 283 pp.Google Scholar
  18. Cassie, R. M., 1962. Frequency distribution models in the ecology of plankton and other organisms. J. anim. Ecol. 31: 65–92.Google Scholar
  19. Cassie, R. M., 1963. Microdistribution of plankton. Oceanogr. Mar. Biol. annu. Rev. 1: 223–252.Google Scholar
  20. Clutter, R. I., 1969. The microdistribution and social behavior of some pelagic mysid shrimps. J. exp. mar. Biol. Ecol. 3: 125–155.Google Scholar
  21. Colebrook, J. M., 1960a. Plankton and water movements in Lake Windermere. J. anim. Ecol. 29: 217–240.Google Scholar
  22. Colebrook, J. M., 1960b. Some observations of zooplankton swarms in Windermere. J. anim. Ecol. 29: 241–242.Google Scholar
  23. Cooked, R. A., L. D. B. Trehune, J. S. Ford & W. H. Bell, 1970. An opto-electronic plankton sizer. Fish. Res. Bd Can. Tech. Rep. No 172, 40 pp.Google Scholar
  24. Crawford, R. E., C. Hudon & D. G. Parsons. 1992. An acoustic study of shrimp (Pandalus montagui) distribution near Resolution Island (eastern Hudson Strait). Can. J. Fish. aquat. Sci. 49: 842–856.Google Scholar
  25. Cushing, D. H. & D. S. Tungate, 1963. Studies on a Calanus patch. I. The identification of a Calanus patch. J. mar. biol. Ass. U.K. 43: 327–337.Google Scholar
  26. Davis, C. C., 1969. Seasonal distribution, constitution and abundance of zooplankton in Lake Erie. J. Fish. Res. Bd Can. 26: 2459–2476.Google Scholar
  27. Davis, C. S., G. R. Flierl, P. H. Wiebe & P. J. S. Franks, 1991. Micropatchiness turbulence and recruitment in plankton. J. mar. Res. 49: 109–152.Google Scholar
  28. De Nie, H. W., H. J. Bromley & J. Vijverberg, 1980. Distribution patterns of zooplankton in Tjeukemeer, The Netherlands. J. Plankton Res. 2: 317–334.Google Scholar
  29. Downing, J. A., 1986. Spatial heterogeneity: evolved behaviour or mathematical artifact. Nature (Lond.) 323: 255–257.Google Scholar
  30. Downing, J. A., M. Perusse & Y. Frenette, 1987. Effect of inter-replicate variance on zooplankton sampling design and data analysis. Limnol. Oceanogr. 32: 673–680.Google Scholar
  31. Downing, J. A., 1991. Biological heterogeneity in aquatic ecosystems. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York: 9: 160–180.Google Scholar
  32. Dumont, H. J., 1967. A five day study of patchiness in Bosmina coregoni Baird in a shallow eutrophic lake. Mem. Inst. Ital. Idrobiol. Dott. Marco Marchii 22: 81–103.Google Scholar
  33. Dutilleul, P. & P. Legendre, 1993. Spatial heterogeneity against heteroscedasticity: an ecological paradigm versus a statistical concept. Oikos 66: 152–171.Google Scholar
  34. Evans, G. T., 1978. Biological effects of vertical-horizontal interactions. In Spatial pattern in plankton communities. J. H. Steele. Mar. Sci. (Plenum) 3: 157–179.Google Scholar
  35. Fasham, M. J. R., 1978. The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Annu. Rev. 16: 43–79.Google Scholar
  36. Flagg, C. N. & S. L. Smith, 1989. On the use of the acoustic Doppler current profiler to measure zooplankton abundance. Deep-Sea Res. 36: 455–474.Google Scholar
  37. Frontier, S., 1973. Étude statistique de la dispersion du zooplankton. J. exp. mar. Biol. Ecol. 12: 229–262.Google Scholar
  38. Gannon, J. E., 1975. Horizontal distribution of crustacean zooplankton along a cross lake transect in Lake Michigan. J. Great Lakes Res. 1: 79–91.Google Scholar
  39. George, D. G. & R. W. Edwards, 1973. Daphnia distribution within Langmuir circulations. Limnol. Oceanogr. 18: 798–800.Google Scholar
  40. George, D. G., 1974. Dispersion patterns in the zooplankton populations of a eutrophic reservoir. J. Anim. Ecol. 43: 537–551.Google Scholar
  41. Gliwicz, Z. M. & A. Rykowska, 1992. Shore avoidance in zooplankton: A predator-induced behavior or predator-induced mortality. J. Plankton Res. 1992. 14: 1331–1342.Google Scholar
  42. Greene, C. H., 1983. Selective predation in freshwater zooplankton communities. Int. Revue ges. Hdyrobiol. 68: 297–315.Google Scholar
  43. Gujarati, D., 1978. Basic Econometrics. McGraw-Hill, New York.Google Scholar
  44. Haeckel, E., 1891. Plankton Studien. Jena Zeitschrift für Naturwissenschaft 25: 232–336.Google Scholar
  45. Hamner, W. M. & D. Schneider, 1986. Regularly spaced rows of medusae in the Bering Sea: role of Langmuir circulation. Limnol. Oceanogr. 31: 171–177.Google Scholar
  46. Hanazato, T., 1992. Direct and indirect effects of low-oxygen layers on lake zooplankton communities. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 87–98.Google Scholar
  47. Hart, R. C., 1990. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: patterns and implications. Freshwat. Biol. 24: 241–263.Google Scholar
  48. Haury, L. R., J. A. McGowan & P. H. Wiebe, 1978. Patterns and processes in the time-space scales of plankton distribution. In Steele, J. H. (ed.). Spatial pattern in plankton communities. Mar. Sci. (Plenum) 3: 277–327.Google Scholar
  49. Hensen, V., 1884. Ueber die bestimmung der Planktons oder des im Meer Triebenden Materials an Pflanzen und Tieren. Bericht der Commission zur Wissenschaftlichen Untersuchungen des Deutschen Meere 5 (2).Google Scholar
  50. Herman, A. W., 1988. Simultaneous measurement of zooplankton and light attenuance with a new optical plankton counter. Cont. Shelf Res. 8: 205–221.Google Scholar
  51. Herman, A. W., D. D. Sameoto, C. Shunnian, M. R. Mitchell, B. Petrie & N. Cochrane, 1991. Sources of zooplankton on the Nova Scotia Shelf and their aggregations within deep-shelf basins. Cont. Shelf. Res. 11: 211–238.Google Scholar
  52. Holliday, D. V., R. R. Pieper & G. S. Kleppel, 1989. Determination of zooplankton size and distribution with multifrequency acoustic technology. J. Cons. int. Explor. Mer 46: 135–146.Google Scholar
  53. Horne, E. P. W. & T. Platt, 1984. The dominant space and time scales of variability in the physical and biological fields on continental shelves. Rapp. Proces. Verb. Cons. int. Explor. Mer 183 9–19.Google Scholar
  54. Hurlbert, S. H., 1990. Spatial distribution of the montane unicorn. Oikos 58 257–271.Google Scholar
  55. Jillett, J. B. & J. R. Zeldis, 1985. Aerial observations of surface patchiness of a planktonic crustacean. Bull. mar. Sci. 37: 609–619.Google Scholar
  56. Johannsson, O. E., E. L. Mills & R. O'Gorman, 1991. Changes in the nearshore and offshore zooplankton communities in Lake Ontario: 1981–88. Can. J. Fish. aquat. Sci. 48: 1546–1557.Google Scholar
  57. Johnsen, G. H. & P. J. Jakobsen, 1987. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32: 873–880.Google Scholar
  58. Johnson, D. & T. E. Chua, 1973. Remarkable schooling behavior of a water flea Moina sp. (Cladocera). Crustaceana. 24: 332–333.Google Scholar
  59. Jouffre, D., T. Lam-Hoai, B. Millet & M. Amanieu, 1991. Spatial structuring of zooplankton communities and hydrodynamic pattern in coastal lagoons. Oceanol. Acta 14 489–504.Google Scholar
  60. Kils, U., 1992. The EcoSCOPE and DynIMAGE: microscale tools for in situ studies of predator-prey interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36 83–96.Google Scholar
  61. Klemetsen, A., 1970. Plankton swarms in lake Gjorkvatn, east Finmark Astarte. J. Arct. Biol. 3 83–85.Google Scholar
  62. Kolasa, J. & S. T. A. Pickett, 1991. Ecological heterogeneity. Springer-Verlag. New York.Google Scholar
  63. Kolasa, J. & C. D. Rollo, 1991. Introduction: The heterogeneity of heterogeneity: A glossary. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York, 1: 1–23.Google Scholar
  64. Künne, C., 1925–26. Uber Schwarmbildung bei Bosmina longirostris O. F. M. Arch. Hydrobiol. 16: 508 pp.Google Scholar
  65. Landry, M. R., 1978. Predatory feeding behavior of a marine copepod, Labidocera trispinosa. Limnol. Oceanogr. 23: 1103–1113.Google Scholar
  66. Langford, R. R., 1938. Diurnal and seasonal changes in the distribution of limnetic crustacea in lake Nipissing, Ontario. Univ. Toronto Stud. Biol. Ser. 45: 1–142.Google Scholar
  67. Leach, J. H., 1973. Seasonal distribution, composition and abundance of zooplankton in Ontario Waters of Lake St. Clair. Proc. 15th Conf. Int. Ass. Great Lakes Res. 54–64.Google Scholar
  68. Lee, D. S. & D. J. Hall, 1989. Quantitative sampling of organisms/macroparticulates with a ROV using a collimated illumination system. Oceans 1989: 827–831.Google Scholar
  69. Legendre, L. & S. Demers, 1984. Towards dynamic biological oceanography and limnology. Can. J. Fish. aquat. Sci. 41: 2–19.Google Scholar
  70. Legendre, P., 1987. Constrained clustering. In Developments in numerical ecology. P. Legendre and L. Legendre (eds). NATO Adv. Study Inst. Ser. Ecol. Sci. 14: 289–307.Google Scholar
  71. Legendre, P., 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology (in press).Google Scholar
  72. Legendre, P. & M. J. Fortin, 1989. Spatial analysis and ecological modelling. Vegetatio 80: 107–138.Google Scholar
  73. Lehman, J. T. & S. Scavia, 1982. Microscale nutrient patches produced by zooplankton. Proc. Nat. Acad. Sci. 79: 5001–5005.Google Scholar
  74. Leibold, M. A., 1990. Resources and predators can affect the vertical distributions of zooplankton. Limnol. Oceanogr. 55: 938–944.Google Scholar
  75. Levy, D. A., 1990. Reciprocal diel vertical migration behavior in planktivores and zooplankton in British Columbia lakes. Can. J. Fish. aquat. Sci. 47: 1755–1764.Google Scholar
  76. Levy, D. A., 1991. Acoustic analysis of diel vertical migration behavior of Mysis relicta and Kokanee (Oncirhynchus nerka) within Okanagan Lake, British Columbia. Can. J. Fish. aquat. Sci. 48: 67–72.Google Scholar
  77. Lussenhop, J., 1974. Victor Hensen and the development of sampling methods in ecology. J. Hist. Biol. 7: 319–337.Google Scholar
  78. Mackas, D. L. & C. M. Boyd, 1979. Spectral analysis of zooplankton spatial heterogeneity. Science 204: 62–64.Google Scholar
  79. Mackas, D. L., 1984. Spatial autocorrelation of plankton community composition in a continental shelf ecosystem. Limnol. Oceanogr. 29: 451–471.Google Scholar
  80. Mackas, D. L., K. L. Denman & M. R. Abbott, 1985. Plankton patchiness: biology in the physical vernacular. Bull. mar. Sci. 37: 652–674.Google Scholar
  81. Mackas, D. L., 1992. Seasonal cycle of zooplankton off southwestern British Columbia. Can. J. Fish. aquat. Sci. 49: 903–921.Google Scholar
  82. Malone, B. J. & D. J.McQueen, 1983. Horizontal patchiness in zooplankton populations in two Ontario kettle lakes. Hydrobiologia 99: 101–124.Google Scholar
  83. Marrase, C., J. H. Costello, T. Granata & J. R. Strickler, 1990. Grazing in a turbulent environment: Energy dissipation, encounter rates, and efficacy of feeding currents in Centropages hamatus. Proc. nat. Acad. Sci. 87: 1653–1657.Google Scholar
  84. McGowan, J. A., 1971. Oceanic biogeography of the Pacific. In Funnell, B. M. & W. R. Riedel (eds). The Micropaleontology of the Oceans. Cambridge University Press, Cambridge: 3–74.Google Scholar
  85. McIntosh, R. P., 1991. Concept and terminology of homogeneity and heterogeneity in ecology. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York, 2: 24–26.Google Scholar
  86. McNaught, D. C. & A. D. Hasler, 1961. Surface schooling and feeding behaviour in white bass. Limnol. Oceanogr. 6: 53–60.Google Scholar
  87. Milne, B. T., 1991. Heterogeneity as a multiscale characteristic of landscapes. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York: 4: 69–84.Google Scholar
  88. Morin, A., 1985. Variability of density estimates and the optimization of sampling programs for stream benthos. Can. J. Fish. aquat. Sci. 42: 1530–1534.Google Scholar
  89. Morin, A. & A. Cattaneo, 1992. Factors affecting sampling variability of freshwater periphyton and the power of periphyton studies. Can. J. Fish. aquat. Sci. 49: 1695–1703.Google Scholar
  90. Neess, J. C., 1949. A contribution to aquatic population dynamics. Ph. D. Thesis. Univ. Wis. Madison. 103 pp.Google Scholar
  91. Neill, W. E., 1992. Population variation in the ontogeny of predator-induced vertical migration of copepods. Nature (Lond.) 356: 54–57.Google Scholar
  92. Neill, W. E., 1990. Induced vertical migration in copepods as a defense against invertebrate predation. Nature 345: 524–526.Google Scholar
  93. Neill, W. E. & A. Peacock, 1980. Breaking the bottleneck: Interactions of invertebrate predators and nutrients in oligotrophic lakes. In Kerfoot, W. C. (ed.): Evolution and ecology of zooplankton communities. Am. Soc. Limnol. Oceanogr. Spec. Symp. 3: 715–724.Google Scholar
  94. Noda, M., K. Kawabata, K. Gushima & S. Kakuda, 1992. Importance of zooplankton patches in foraging ecology of the planktivorous fish Chromis chrysurus (Pomacentridae) at Kuchinoerabu Island, Japan. Mar. Ecol. Prog. Ser. 87: 251–263.Google Scholar
  95. O'Neill, R. V., R. H. Gardner, B. T. Milne, M. G. Turner & B. Jackson, 1991. Heterogeneity and spatial hierarchies. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York: 5: 85–96.Google Scholar
  96. Pace, M. L., S. E. G. Findlay & D. Lints, 1991. Variance in zooplankton samples: evaluation of a predictive model. Can. J. Fish. aquat. Sci. 48: 146–151.Google Scholar
  97. Pace, M. L., S. E. G. Findlay & D. Lints, 1992. Zooplankton in advective environments: the Hudson River community and a comparative analysis. Can. J. Fish. aquat. Sci. 49: 1060–1069.Google Scholar
  98. Paffenhofer, G. A. & S. C. Knowles, 1979. Ecological implications of fecal pellet size, production and consumption by copepods. J. mar. Res. 37: 35–49.Google Scholar
  99. Paffenhofer, G. A., 1980. Zooplankton distribution as related to summer hydrographic conditions in Onslow Bay, North Carolina. Bull. mar. Sci. 30: 819–832.Google Scholar
  100. Paffenhofer, G. A. & S. C. Knowles, 1980. Omnivorousness in marine planktonic copepods. J. Plankton Res. 2: 355–365.Google Scholar
  101. Paffenhofer, G. A., T. B. Steward, M. J. Youngbluth & T. G. Bailey. 1991. High-resolution vertical profiles of pelagic tunicates. J. Plankton Res. 13: 971–981.Google Scholar
  102. Patalas, K., 1969. Composition and horizontal distribution of crustacean plankton in lake Ontario. J. Fish. Res. Bd Can. 26: 2135–2164.Google Scholar
  103. Patalas, K., 1981. Spatial structure of the crustacean planktonic community in Lake Winnipeg, Canada. Verh. int. Ver. Limnol. 21: 305–311.Google Scholar
  104. Patalas, K. & A. Salki, 1992. Crustacean plankton in Lake Winnipeg: variation in space and time as a function of lake morphology, geology, and climate. Can. J. Fish. aquat. Sci. 49: 1035–1059.Google Scholar
  105. Pieper, R. E., D. V. Holliday & G. S. Kleppel, 1990. Quantitative zooplankton distributions from multifrequency acoustics. J. Plankton Res. 12: 433–441.Google Scholar
  106. Pinel-Alloul, B., J. A. Downing, M. Pérusse & G. Codin-Blumer, 1988. Spatial heterogeneity in freshwater zooplankton: variation with body size, depth, and scale. Ecology 69: 1393–1400.Google Scholar
  107. Pinel-Alloul, B., G. Méthot, G. Verreault & Y. Vigneault. 1990. Zooplankton species associations in Québec lakes: variation with abiotic factors, including natural and anthropogenic acidification. Can. J. Pish. aquat. Sci. 47: 110–121.Google Scholar
  108. Pinel-Alloul, B. & D. Pont, 1991. Spatial distribution patterns in freshwater macrozooplankton: variation with scale. Can. J. Zool. 69: 1557–1570.Google Scholar
  109. Pingree, R. D., G. R. Forster & G. K. Morrison, 1974. Turbulent convergent tidal fronts. J. mar. Biol. Assoc. UK. 54: 469–479.Google Scholar
  110. Pont, D., 1986. Structure spatiale d'une population du cyclopide Acanthocyclops robustus dans une rizière de Camargue (France). Acta. Oecol. Gen. 7: 289–302.Google Scholar
  111. Price, H. J., 1989. Swimming behavior of krill in responses to algal patches: a mesocosm study. Limnol. Oceanogr. 34: 649–659.Google Scholar
  112. Pugh, P. R., 1978. The application of particle counting to an understanding of the small-scale distribution of plankton. In Steele, J. H. (ed.). Spatial pattern in plankton communities. Plenum Press, N.Y.Google Scholar
  113. Ragotzkie, R. A. & R. A. Bryson, 1953. Correlations of currents with the distribution of adult Daphnia in Lake Mendota. J. mar. Res. 12: 157–172.Google Scholar
  114. Richerson, P. J., T. M. Powell, M. R. Leigh-Abbott & J. A. Coil. 1978. Spatial heterogeneity in a closed basin. In Spatial pattern in plankton communities. J. H. Steele (ed.). Mar. Sci. (Plenum) 3: 239–276.Google Scholar
  115. Riley, G. A., 1976. A model of plankton patchiness. Limnol. Oceanogr. 21: 873–880.Google Scholar
  116. Ringelberg, J., 1991. A mechanism of predator-mediated induction of diel vertical migration in Daphnia hyalina. J. Plankton Res. 13: 83–89.Google Scholar
  117. Rodriguez, M., P. Magnan & S. Lacasse, 1993. Fish species composition and lake abiotic variables in relation to the abundance and size structure of cladoceran zooplankton. Can. J. Fish. aquat. Sci. in press.Google Scholar
  118. Rothschild, B. J. & T. R. Osborn, 1988. Small-scale turbulence and plankton contact rates. J. Plankton Res. 10: 465–474.Google Scholar
  119. Rudstam, L. G., N. Melnik, O. Timoshkin, S. Hansson, S. Pushkin & V. Nemov, 1992. Diel dynamics of an aggregation of Macrohectopus branickii (Crustacea, Amphipoda) in the Barguzin Bay, Lake Baikal, USSR. J. Great Lake Res. (in press).Google Scholar
  120. Sameoto, D. D. & A. W. Herman, 1992. Effect of the outflow from the Gulf of St. Lawrence on Nova Scotia shelf zooplankton. Can. J. Fish. aquat. Sci. 49: 857–869.Google Scholar
  121. Schneider, D. C. & C. D. Bajdik, 1992. Decay of zooplankton patchiness generated at the sea surface. J. Plankton Res. 14: 531–543.Google Scholar
  122. Schulze, P. C., J. R. Strickler, B. I. Bergstrom, M. S. Berman, P. Donaghay, S. Gallager, J. F. Haney, B. R. Hargreaves, U. Kils, G. A. Paffenhofer, S. Richman, H. A. Vanderploeg, W. Welsch, D. Wethey & J. Yen, 1992. Video systems for in situ studies of zooplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 1–21.Google Scholar
  123. Simard, Y., R. De Ladurantaye & J. C. Therriault. 1986. Aggregation of euphausiids along a coastal shelf in an upwelling environment. Mar. Ecol. Prog. Ser. 32: 203–215.Google Scholar
  124. Simard, Y. & D. L. Mackas, 1989. Mesoscale aggregations of euphausiid sound scattering layers on the continental shelf of Vancouver Island. Can. J. Fish. aquat. Sci. 46: 1238–1249.Google Scholar
  125. Simard, Y., P. Legendre, G. Lavoie & D. Marcotte, 1992. Mapping, estimating biomass, and optimizing sampling programs for spatially autocorrelated data: case study of the northern shrimp (Pandalus borealis). Can. J. Fish. aquat. Sci. 49: 32–45.Google Scholar
  126. Smith, F. E., 1972. Spatial heterogeneity, stability, and diversity in ecosystems. Trans. Conn. Acad. Arts Sci.44: 309–335.Google Scholar
  127. Smith, S. L., R. E. Pieper, M. V. Moore, L. G. Rudstam, C. H. Greene, J. E. Zamon, C. N. Flagg & C. E. Williamson, 1992. Acoustic techniques for the in situ observation of zooplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 23–43.Google Scholar
  128. Sokal, R. R. & J. D. Thompson, 1987. Applications of spatial autocorrelation in ecology. IN: Developments in numerical ecology. P. Legendre & L. Legendre (eds). NATO Adv. Study Inst. Ser. Ecol. Sci. 14: 431–66.Google Scholar
  129. Southern, R. & A. C. Gardiner, 1926. The seasonal distribution of the crustacea of the plankton of Lough Derg and the R. Shannon Sci. Invest. Minist. Fish. Irish. Free St. #1, 171 pp.Google Scholar
  130. Sprules, W. G., B. Bergstrom, H. Cyr, B. R. Hargreaves, S. S. Kilham, H. J. MacIsaac, K. Matshushita, R. Stemberger & R. Williams, 1992. Non-video optical instruments for studying zooplankton distribution and abundance. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 45–58.Google Scholar
  131. Stan, R. H., 1971. The horizontal-vertical distribution hypothesis: Langmuir circulation and Daphnia distributions. Limnol. Oceanogr. 16: 453–466.Google Scholar
  132. Strickler, J. R., 1977. Observation of swimming performances of planktonic copepods. Limnol. Oceanogr. 22: 165–170.Google Scholar
  133. Taylor, L. R., 1961. Aggregation, variance and the mean. Nature (Lond.) 189: 732–735.Google Scholar
  134. Tessier, A. J., 1983. Coherence and horizontal movements of patches of Holopedium gibberum (Cladocera). Oecologia 60: 71–75.Google Scholar
  135. Tiselius, P., 1992. Behavior of Acartia tonsa in patchy food environments. Limnol. Oceanogr. 37: 1640–1651.Google Scholar
  136. Tjossem, S. F., 1990. Effects of fish chemical cues on vertical migration behavior of Chaoborus. Limnol. Oceanogr. 35: 1456–1468.Google Scholar
  137. Tonn, W. M., J. J. Magnuson, M. Rask & J. Toivonen, 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Am. Nat. 136: 345–375.Google Scholar
  138. Tonolli, V., 1958. Zooplankton swarms. Verh. int. Ver. Limnol. 13: 776–777.Google Scholar
  139. Urabe, J., 1990. Stable horizontal variation in the zooplankton community structure of a reservoir maintained by predation and competition. Limnol. Oceanogr. 35: 1703–1717.Google Scholar
  140. Watson, N. H. F., 1976. Seasonal distribution and abundance of crustacean zooplankton in Lake Erie, 1970. J. Fish. Res. Bd Can. 33: 612–621.Google Scholar
  141. Wiebe, P. H., 1970. Small-scale spatial distribution in oceanic zooplankton. Limnol. Oceanogr. 15: 205–217.Google Scholar
  142. Wiebe, P. H., N. J. Copley & S. H. Boyd, 1992. Coarse-scale horizontal patchiness and vertical migration of zooplankton in Gulf Stream warm-core ring 82-H. Deep-Sea Research Part A: Oceanographic research papers, 39: 247–278.Google Scholar
  143. Williamson, C. E., 1981. Foraging behavior of a freshwater copepod: Frequency changes in looping behavior at high and low prey densities. Oecologia 50: 332–336.Google Scholar
  144. Williamson, C. E. & N. M. Butler. 1986. Predation on rotifers by the suspension-feeding calanoid copepod Diaptomus pallidus. Limnol. Oceanogr. 31: 393–402.Google Scholar
  145. Williamson, C. E., P. C. Schulze & W. G. Sprules, 1992. Opening remarks: The need for advanced techniques for in situ studies of zooplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 135–140.Google Scholar
  146. Williamson, C. E., 1993. Linking predation risk models with behavioral mechanisms: identifying population bottlenecks. Ecology 74: 320–331.Google Scholar
  147. Zeldis, J. R. & J. B. Jillet, 1982. Aggregation of pelagic Munida gregaria (Fabricius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4: 839–857.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • P. Pinel-Alloul
    • 1
  1. 1.Groupe de Recherche Interuniversitaire en Limnologie et en Environnement aquatique (G.R.I.L.), Département de sciences biologiquesUniversité de MontréalMontréalCanada

Personalised recommendations